Download Free The Vibrionaceae Horizontal Gene Pool Book in PDF and EPUB Free Download. You can read online The Vibrionaceae Horizontal Gene Pool and write the review.

This open access book offers the first comprehensive account of the pan-genome concept and its manifold implications. The realization that the genetic repertoire of a biological species always encompasses more than the genome of each individual is one of the earliest examples of big data in biology that opened biology to the unbounded. The study of genetic variation observed within a species challenges existing views and has profound consequences for our understanding of the fundamental mechanisms underpinning bacterial biology and evolution. The underlying rationale extends well beyond the initial prokaryotic focus to all kingdoms of life and evolves into similar concepts for metagenomes, phenomes and epigenomes. The book’s respective chapters address a range of topics, from the serendipitous emergence of the pan-genome concept and its impacts on the fields of microbiology, vaccinology and antimicrobial resistance, to the study of microbial communities, bioinformatic applications and mathematical models that tie in with complex systems and economic theory. Given its scope, the book will appeal to a broad readership interested in population dynamics, evolutionary biology and genomics.
An exploration of the raw power of genetic material to refashion itself to any purpose... Virtually all organisms contain multiple mobile DNAs that can move from place to place, and in some organisms, mobile DNA elements make up a significant portion of the genome. Mobile DNA III provides a comprehensive review of recent research, including findings suggesting the important role that mobile elements play in genome evolution and stability. Editor-in-Chief Nancy L. Craig assembled a team of multidisciplinary experts to develop this cutting-edge resource that covers the specific molecular mechanisms involved in recombination, including a detailed structural analysis of the enzymes responsible presents a detailed account of the many different recombination systems that can rearrange genomes examines the tremendous impact of mobile DNA in virtually all organisms Mobile DNA III is valuable as an in-depth supplemental reading for upper level life sciences students and as a reference for investigators exploring new biological systems. Biomedical researchers will find documentation of recent advances in understanding immune-antigen conflict between host and pathogen. It introduces biotechnicians to amazing tools for in vivo control of designer DNAs. It allows specialists to pick and choose advanced reviews of specific elements and to be drawn in by unexpected parallels and contrasts among the elements in diverse organisms. Mobile DNA III provides the most lucid reviews of these complex topics available anywhere.
Phylogenies, or evolutionary trees, are the basic structures necessary to think about and analyze differences between species. Statistical, computational, and algorithmic work in this field has been ongoing for four decades now, and there have been great advances in understanding. Yet no book has summarized this work. Inferring Phylogenies does just that in a single, compact volume. Phylogenies are inferred with various kinds of data. This book concentrates on some of the central ones: discretely coded characters, molecular sequences, gene frequencies, and quantitative traits. Also covered are restriction sites, RAPDs, and microsatellites.
Bacteria are the most ubiquitous of all organisms. Responsible for a number of diseases and for many of the chemical cycles on which life depends, they are genetically adaptable. Vital to this adaptability is the existence of autonomous genetic elements-plasmids-which promote genetic exchange and recombination. The genes carried by any particular plasmid may be found in only a few individuals of any species but can also be shared with other species and thus constitute a horizontal gene pool. This book explains the various contributions that plasmids make to this pool: the replication, stable inheritance and transfer modules, the phenotypic markers they carry, the way they evolve, the ways they contribute to their host population and the approaches that we use to study and classify them. It also looks at what we know about their activity in natural communities and the way that they interact with other mobile elements to promote bacterial evolution.
This edited volume explores Campylobacter species, which are some of the most important foodborne pathogens. Above all, contaminated poultry meat can cause human gastroenteritis in both developed and developing countries. The respective contributions reveal how these infections can also increase the risk of generalized paralytic diseases such as Guillain-Barré syndrome, Miller-Fisher syndrome, and Chinese paralytic syndrome. Due to their influence on the nervous system, circulatory system, and various organs, Campylobacter infections represent a serious public health concern. Campylobacter can be effectively combated by addressing the hygienic conditions in both food production and human lifestyles. Accordingly, the authors put forward a One Health perspective, which provides readers with essential insights into the basic biology of Campylobacter, as well as practical guidance on aspects ranging from food production to the clinical treatment of infections. Chapters 'Population Biology and Comparative Genomics of Campylobacter Species' and 'Natural Competence and Horizontal Gene Transfer in Campylobacter' are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The book focuses on the evolutionary impact of horizontal gene transfer processes on pathogenicity, environmental adaptation and biological speciation. Newly acquired genetic material has been considered as a driving force in evolution for prokaryotic genomes for many years, with recent technical developments advancing this field further. However, the extent and implications of gene transfer between prokaryotes and eukaryotes still raise controversies. This multi-authored volume introduces various means by which DNA can be exchanged, covers gene transfer between prokaryotes and their viruses as well as between bacteria and eukaryotes, such as fungi, plants and animals, and addresses the role of horizontal gene transfer in human diseases. Aspects discussed also include the relevance for virulence and drug resistance development on one hand, and for the occurrence of naturally derived antibiotics and other secondary metabolites on the other hand. This book offers new insights to anyone interested in genome evolution and the exchange of DNA between the different domains of life, the genetic toolkit for adaptation and the emergence of multidrug resistant bacteria.
Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.
This first major reference work dedicated to the mannifold industrial and medical applications of bacteriophages provides both theoretical and practical insights into the emerging field of bacteriophage biotechnology. The book introduces to bacteriophage biology, ecology and history and reviews the latest technologies and tools in bacteriophage detection, strain optimization and nanotechnology. Usage of bacteriophages in food safety, agriculture, and different therapeutic areas is discussed in detail. This book serves as essential guide for researchers in applied microbiology, biotechnology and medicine coming from both academia and industry.
In answer to public concerns, Microbial Food Safety in Animal Agriculture: Current Topics provides timely information on this area of increasing importance, giving a broad overview of pre-harvest microbial food safety. Written by specialists from around the world, this essential reference focuses on research in the areas of antimicrobial resistance, risk assessment, microbial detection methods and diagnostics, and emerging diseases. Coverage provides balanced overviews of Federal, industry, and academic perspectives on key issues in food safety. Specific organisms explored in depth include: Salmonellaspp., Campylobacterspp., Escherichia coli 0157:H7, and Listeria monocytogene. No other single source offers current information and detailed references on issues in pre-harvest food safety in production animal agriculture. Veterinarians, researchers, and food safety professionals in academia, government agencies, and food animal production industries will discover this resource crucial to defensive awareness.