Download Free The Verilog Pli Handbook Book in PDF and EPUB Free Download. You can read online The Verilog Pli Handbook and write the review.

by Maq Mannan President and CEO, DSM Technologies Chairman of the IEEE 1364 Verilog Standards Group Past Chairman of Open Verilog International One of the major strengths of the Verilog language is the Programming Language Interface (PLI), which allows users and Verilog application developers to infinitely extend the capabilities of the Verilog language and the Verilog simulator. In fact, the overwhelming success of the Verilog language can be partly attributed to the exi- ence of its PLI. Using the PLI, add-on products, such as graphical waveform displays or pre and post simulation analysis tools, can be easily developed. These products can then be used with any Verilog simulator that supports the Verilog PLI. This ability to create thi- party add-on products for Verilog simulators has created new markets and provided the Verilog user base with multiple sources of software tools. Hardware design engineers can, and should, use the Verilog PLI to customize their Verilog simulation environment. A Company that designs graphics chips, for ex- ple, may wish to see the simulation results of a new design in some custom graphical display. The Verilog PLI makes it possible, and even trivial, to integrate custom so- ware, such as a graphical display program, into a Verilog simulator. The simulation results can then dynamically be displayed in the custom format during simulation. And, if the company uses Verilog simulators from multiple simulator vendors, this integrated graphical display will work with all the simulators.
This book is designed to serve two specific needs: * A tutorial on how to write PLI applications * A reference book on the IEEE 1364-1998 Verilog PLI standard. Towards this end, this book has two distinct parts. Part One is written for new users of the PLI. These chapters explain how the PLI works and how it is used to solve basic design verification tasks. A large number of small but useful examples illustrate the concepts presented in each chapter. Part Two provides a comprehensive reference of the IEEE 1364 PLI standard. The Verilog PLI Handbook: A User's Guide and Comprehensive Reference on the Verilog Programming Language Interface will be of interest to hardware design engineers who use or are familiar with the Verilog Hardware Description Language.
The Verilog Programming Language Interface is a powerful feature of the Verilog standard. Through this interface, a Verilog simulator can be customized to perform virtually any engineering task desired, such as adding custom design debug utilities, adding proprietary file read/write utilities, and interfacing bus functional C language models to a simulator. This book serves as both a user's guide for learning the Verilog PLI, and as a comprehensive reference manual on the Verilog PLI standard. Both the TF/ACC ("PLI 1.0") and the VPI ("PLI 2.0") generations of the PLI are presented, based on the IEEE 1364 Verilog standard. The second edition of this book adds detailed coverage of the many enhancements added in the latest IEEE 1364-2001 Verilog standard ("Verilog-2001").
Principles of Verilog PLI is a `how to do' text on Verilog Programming Language Interface. The primary focus of the book is on how to use PLI for problem solving. Both PLI 1.0 and PLI 2.0 are covered. Particular emphasis has been put on adopting a generic step-by-step approach to create a fully functional PLI code. Numerous examples were carefully selected so that a variety of problems can be solved through ther use. A separate chapter on Bus Functional Model (BFM), one of the most widely used commercial applications of PLI, is included. Principles of Verilog PLI is written for the professional engineer who uses Verilog for ASIC design and verification. Principles of Verilog PLI will be also of interest to students who are learning Verilog.
by Phil Moorby The Verilog Hardware Description Language has had an amazing impact on the mod em electronics industry, considering that the essential composition of the language was developed in a surprisingly short period of time, early in 1984. Since its introduc tion, Verilog has changed very little. Over time, users have requested many improve ments to meet new methodology needs. But, it is a complex and time consuming process to add features to a language without ambiguity, and maintaining consistency. A group of Verilog enthusiasts, the IEEE 1364 Verilog committee, have broken the Verilog feature doldrums. These individuals should be applauded. They invested the time and energy, often their personal time, to understand and resolve an extensive wish-list of language enhancements. They took on the task of choosing a feature set that would stand up to the scrutiny of the standardization process. I would like to per sonally thank this group. They have shown that it is possible to evolve Verilog, rather than having to completely start over with some revolutionary new language. The Verilog 1364-2001 standard provides many of the advanced building blocks that users have requested. The enhancements include key components for verification, abstract design, and other new methodology capabilities. As designers tackle advanced issues such as automated verification, system partitioning, etc., the Verilog standard will rise to meet the continuing challenge of electronics design.
There is much excitement in the design and verification community about assertion-based design. The question is, who should study assertion-based design? The emphatic answer is, both design and verification engineers. What may be unintuitive to many design engineers is that adding assertions to RTL code will actually reduce design time, while better documenting design intent. Every design engineer should read this book! Design engineers that add assertions to their design will not only reduce the time needed to complete a design, they will also reduce the number of interruptions from verification engineers to answer questions about design intent and to address verification suite mistakes. With design assertions in place, the majority of the interruptions from verification engineers will be related to actual design problems and the error feedback provided will be more useful to help identify design flaws. A design engineer who does not add assertions to the RTL code will spend more time with verification engineers explaining the design functionality and intended interface requirements, knowledge that is needed by the verification engineer to complete the job of testing the design.
This book will help engineers write better Verilog/SystemVerilog design and verification code as well as deliver digital designs to market more quickly. It shows over 100 common coding mistakes that can be made with the Verilog and SystemVerilog languages. Each example explains in detail the symptoms of the error, the languages rules that cover the error, and the correct coding style to avoid the error. The book helps digital design and verification engineers to recognize, and avoid, these common coding mistakes. Many of these errors are very subtle, and can potentially cost hours or days of lost engineering time trying to find and debug them.