Download Free The Us Science And Engineering Workforce Book in PDF and EPUB Free Download. You can read online The Us Science And Engineering Workforce and write the review.

Each of 32 nonprofit organizations contributing a presentation to the Pan-Organizational Summit on the Science and Engineering Workforce (November 11-12, 2002; The National Academies, Washington, DC) was invited to issue a corresponding position paper to be reproduced in this volume. The bulk of this report comprises these papers. In addition, Shirley Jackson and Joseph Toole, two of the keynote speakers, have included their remarks.
In order for the United States to maintain the global leadership and competitiveness in science and technology that are critical to achieving national goals, we must invest in research, encourage innovation, and grow a strong and talented science and technology workforce. Expanding Underrepresented Minority Participation explores the role of diversity in the science, technology, engineering and mathematics (STEM) workforce and its value in keeping America innovative and competitive. According to the book, the U.S. labor market is projected to grow faster in science and engineering than in any other sector in the coming years, making minority participation in STEM education at all levels a national priority. Expanding Underrepresented Minority Participation analyzes the rate of change and the challenges the nation currently faces in developing a strong and diverse workforce. Although minorities are the fastest growing segment of the population, they are underrepresented in the fields of science and engineering. Historically, there has been a strong connection between increasing educational attainment in the United States and the growth in and global leadership of the economy. Expanding Underrepresented Minority Participation suggests that the federal government, industry, and post-secondary institutions work collaboratively with K-12 schools and school systems to increase minority access to and demand for post-secondary STEM education and technical training. The book also identifies best practices and offers a comprehensive road map for increasing involvement of underrepresented minorities and improving the quality of their education. It offers recommendations that focus on academic and social support, institutional roles, teacher preparation, affordability and program development.
Skilled technical occupationsâ€"defined as occupations that require a high level of knowledge in a technical domain but do not require a bachelor's degree for entryâ€"are a key component of the U.S. economy. In response to globalization and advances in science and technology, American firms are demanding workers with greater proficiency in literacy and numeracy, as well as strong interpersonal, technical, and problem-solving skills. However, employer surveys and industry and government reports have raised concerns that the nation may not have an adequate supply of skilled technical workers to achieve its competitiveness and economic growth objectives. In response to the broader need for policy information and advice, Building America's Skilled Technical Workforce examines the coverage, effectiveness, flexibility, and coordination of the policies and various programs that prepare Americans for skilled technical jobs. This report provides action-oriented recommendations for improving the American system of technical education, training, and certification.
Beginning in the early 2000s, there was an upsurge of national concern over the state of the science and engineering job market that sparked a plethora of studies, commission reports, and a presidential initiative, all stressing the importance of maintaining American competitiveness in these fields. Science and Engineering Careers in the United States is the first major academic study to probe the issues that underlie these concerns. This volume provides new information on the economics of the postgraduate science and engineering job market, addressing such topics as the factors that determine the supply of PhDs, the career paths they follow after graduation, and the creation and use of knowledge as it is reflected by the amount of papers and patents produced. A distinguished team of contributors also explores the tensions between industry and academe in recruiting graduates, the influx of foreign-born doctorates, and the success of female doctorates. Science and Engineering Careers in the United States will raise new questions about stimulating innovation and growth in the American economy.
The future competitiveness of the United States in an increasingly interconnected global economy depends on the nation fostering a workforce with strong capabilities and skills in science, technology, engineering, and mathematics (STEM). STEM knowledge and skills enable both individual opportunity and national competitiveness, and the nation needs to develop ways of ensuring access to high-quality education and training experiences for all students at all levels and for all workers at all career stages. The National Science Foundation (NSF) holds a primary responsibility for overseeing the federal government's efforts to foster the creation of a STEM-capable workforce. As part of its efforts in this endeavor, NSF's Directorate on Education and Human Resources asked the National Academies of Sciences, Engineering, and Medicine to convene a workshop that would contribute to NSF's preparation of a theoretical and evidence-based STEM Workforce Development R&D Core Framework. Participants discussed research themes, identified gaps and emerging research opportunities, and recommended refinements in the goals of the framework. This report summarizes the presentations and discussions from the workshop.
Recent years have yielded significant advances in computing and communication technologies, with profound impacts on society. Technology is transforming the way we work, play, and interact with others. From these technological capabilities, new industries, organizational forms, and business models are emerging. Technological advances can create enormous economic and other benefits, but can also lead to significant changes for workers. IT and automation can change the way work is conducted, by augmenting or replacing workers in specific tasks. This can shift the demand for some types of human labor, eliminating some jobs and creating new ones. Information Technology and the U.S. Workforce explores the interactions between technological, economic, and societal trends and identifies possible near-term developments for work. This report emphasizes the need to understand and track these trends and develop strategies to inform, prepare for, and respond to changes in the labor market. It offers evaluations of what is known, notes open questions to be addressed, and identifies promising research pathways moving forward.
Engineering skills and knowledge are foundational to technological innovation and development that drive long-term economic growth and help solve societal challenges. Therefore, to ensure national competitiveness and quality of life it is important to understand and to continuously adapt and improve the educational and career pathways of engineers in the United States. To gather this understanding it is necessary to study the people with the engineering skills and knowledge as well as the evolving system of institutions, policies, markets, people, and other resources that together prepare, deploy, and replenish the nation's engineering workforce. This report explores the characteristics and career choices of engineering graduates, particularly those with a BS or MS degree, who constitute the vast majority of degreed engineers, as well as the characteristics of those with non-engineering degrees who are employed as engineers in the United States. It provides insight into their educational and career pathways and related decision making, the forces that influence their decisions, and the implications for major elements of engineering education-to-workforce pathways.
The number of immigrants in the US science, technology, engineering, and mathematics (STEM) workforce and among recipients of advanced STEM degrees at US universities has increased in recent decades. In light of the current public debate about immigration, there is a need for evidence on the economic impacts of immigrants on the STEM workforce and on innovation. Using new data and state-of-the-art empirical methods, this volume examines various aspects of the relationships between immigration, innovation, and entrepreneurship, including the effects of changes in the number of immigrants and their skill composition on the rate of innovation; the relationship between high-skilled immigration and entrepreneurship; and the differences between immigrant and native entrepreneurs. It presents new evidence on the postgraduation migration patterns of STEM doctoral recipients, in particular the likelihood these graduates will return to their home country. This volume also examines the role of the US higher education system and of US visa policy in attracting foreign students for graduate study and retaining them after graduation.
For a period of history no women worked outside the home. Bust as years have gone by and society has changed, Women are working varying jobs every day. They are, however, underrepresented in some sectors of jobs. This includes women in the engineering and science fields. To matters worse, women do not ascend the career ladder as fast as or as far as men do. The impact of this and related problems for science, the academic enterprise, the U.S. economy, and global economic competitiveness have been recently examined. The Chemical Sciences Roundtable evaluate that the demographics of the workforce and the implications for science and society vary, depending on the field of science or engineering. The roundtable has organized a workshop, "Women in the Chemical Workforce," to address issues pertinent to the chemical and chemical engineering workforce as a whole, with an emphasis on the advancement of women. Women in the Chemical Workforce: A Workshop Report to the Chemical Sciences Roundtable includes reports regarding the workshop's three sessionsâ€"Context and Overview, Opportunities for Change, and Conditions for Successâ€"as well as presentations by invited speakers, discussions within breakout groups, oral reports from each group.