Download Free The Trace Formula And Base Change For Gl 3 Book in PDF and EPUB Free Download. You can read online The Trace Formula And Base Change For Gl 3 and write the review.

A general principle, discovered by Robert Langlands and named by him the "functoriality principle," predicts relations between automorphic forms on arithmetic subgroups of different reductive groups. Langlands functoriality relates the eigenvalues of Hecke operators acting on the automorphic forms on two groups (or the local factors of the "automorphic representations" generated by them). In the few instances where such relations have been probed, they have led to deep arithmetic consequences. This book studies one of the simplest general problems in the theory, that of relating automorphic forms on arithmetic subgroups of GL(n,E) and GL(n,F) when E/F is a cyclic extension of number fields. (This is known as the base change problem for GL(n).) The problem is attacked and solved by means of the trace formula. The book relies on deep and technical results obtained by several authors during the last twenty years. It could not serve as an introduction to them, but, by giving complete references to the published literature, the authors have made the work useful to a reader who does not know all the aspects of the theory of automorphic forms.
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.
A general principle, discovered by Robert Langlands and named by him the "functoriality principle," predicts relations between automorphic forms on arithmetic subgroups of different reductive groups. Langlands functoriality relates the eigenvalues of Hecke operators acting on the automorphic forms on two groups (or the local factors of the "automorphic representations" generated by them). In the few instances where such relations have been probed, they have led to deep arithmetic consequences. This book studies one of the simplest general problems in the theory, that of relating automorphic forms on arithmetic subgroups of GL(n,E) and GL(n,F) when E/F is a cyclic extension of number fields. (This is known as the base change problem for GL(n).) The problem is attacked and solved by means of the trace formula. The book relies on deep and technical results obtained by several authors during the last twenty years. It could not serve as an introduction to them, but, by giving complete references to the published literature, the authors have made the work useful to a reader who does not know all the aspects of the theory of automorphic forms.
Number Theory, Trace Formulas and Discrete Groups: Symposium in Honor of Atle Selberg Oslo, Norway, July 14-21, 1987 is a collection of papers presented at the 1987 Selberg Symposium, held at the University of Oslo. This symposium contains 30 lectures that cover the significant contribution of Atle Selberg in the field of mathematics. This book is organized into three parts encompassing 29 chapters. The first part presents a brief introduction to the history and developments of the zeta-function. The second part contains lectures on Selberg's considerable research studies on understanding the principles of several aspects of mathematics, including in modular forms, the Riemann zeta function, analytic number theory, sieve methods, discrete groups, and trace formula. The third part is devoted to Selberg's further research works on these topics, with particular emphasis on their practical applications. Some of these research studies, including the integral representations of Einstein series and L-functions; first eigenvalue for congruence groups; the zeta function of a Kleinian group; and the Waring's problem are discussed. This book will prove useful to mathematicians, researchers, and students.
Drinfeld Moduli Schemes and Automorphic Forms: The Theory of Elliptic Modules with Applications is based on the author’s original work establishing the correspondence between ell-adic rank r Galois representations and automorphic representations of GL(r) over a function field, in the local case, and, in the global case, under a restriction at a single place. It develops Drinfeld’s theory of elliptic modules, their moduli schemes and covering schemes, the simple trace formula, the fixed point formula, as well as the congruence relations and a "simple" converse theorem, not yet published anywhere. This version, based on a recent course taught by the author at The Ohio State University, is updated with references to research that has extended and developed the original work. The use of the theory of elliptic modules in the present work makes it accessible to graduate students, and it will serve as a valuable resource to facilitate an entrance to this fascinating area of mathematics.
The lectures from a course in the representation theory of semi- simple groups, automorphic forms, and the relations between them. The purpose is to help analysts make systematic use of Lie groups in work on harmonic analysis, differential equations, and mathematical physics; and to provide number theorists with the representation-theoretic input to Wiles's proof of Fermat's Last Theorem. Begins with an introductory treatment of structure theory and ends with the current status of functionality. Annotation copyrighted by Book News, Inc., Portland, OR