Download Free The Theory Of Semirings With Applications In Mathematics And Theoretical Computer Science Book in PDF and EPUB Free Download. You can read online The Theory Of Semirings With Applications In Mathematics And Theoretical Computer Science and write the review.

This work is an updated and considerably expanded version of the author's book The Theory of Semirings, with Applications to Mathematics and Theoretical Science, which has been recognized as the definitive reference work in this area. This edition includes many of the new results in this area, as well as further applications of semiring theory in such areas as idempotent analysis, discrete dynamical systems, formal language theory, fuzzy set theory, optimization etc. The book contains an extensive bibliography and a large number of examples. Audience: This book is aimed both at mathematicians and at researchers in applied mathematics and theoretical computer science. It is also suitable for use as a graduate-level textbook.
This book provides an introduction to the algebraic theory of semirings and, in this context, to basic algebraic concepts as e.g. semigroups, lattices and rings. It includes an algebraic theory of infinite sums as well as a detailed treatment of several applications in theoretical computer science. Complete proofs, various examples and exercises (some of them with solutions) make the book suitable for self-study. On the other hand, a more experienced reader who looks for information about the most common concepts and results on semirings will find cross-references throughout the book, a comprehensive bibliography and various hints to it.
The purpose of this book is to present an up to date account of fuzzy ideals of a semiring. The book concentrates on theoretical aspects and consists of eleven chapters including three invited chapters. Among the invited chapters, two are devoted to applications of Semirings to automata theory, and one deals with some generalizations of Semirings. This volume may serve as a useful hand book for graduate students and researchers in the areas of Mathematics and Theoretical Computer Science.
The primary objective of this essential text is to emphasize the deep relations existing between the semiring and dioïd structures with graphs and their combinatorial properties. It does so at the same time as demonstrating the modeling and problem-solving flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures which either extend usual algebra or form a new branch of it.
Semiring theory stands with a foot in each of two mathematical domains. The first being abstract algebra and the other the fields of applied mathematics such as optimization theory, the theory of discrete-event dynamical systems, automata theory, and formal language theory, as well as from the allied areas of theoretical computer science and theoretical physics. Most important applications of semiring theory in these areas turn out to revolve around the problem of finding the equalizer of a pair of affine maps between two semimodules. In this volume, we chart the state of the art on solving this problem, and present many specific cases of applications. This book is essentially the third part of a trilogy, along with Semirings and their Applications, and Power Algebras over Semirings, both written by the same author and published by Kluwer Academic Publishers in 1999. While each book can be read independently of the others, to get the full force of the theory and applications one should have access to all three. This work will be of interest to academic and industrial researchers and graduate students. The intent of the book is to bring the applications to the attention of the abstract mathematicians and to make the abstract mathematics available to those who are using these tools in an ad-hoc manner without realizing the full force of the theory.
There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world. - Nikolai Ivanovich Lobatchevsky This book is an extensively-revised and expanded version of "The Theory of Semirings, with Applicationsin Mathematics and Theoretical Computer Science" [Golan, 1992], first published by Longman. When that book went out of print, it became clear - in light of the significant advances in semiring theory over the past years and its new important applications in such areas as idempotent analysis and the theory of discrete-event dynamical systems - that a second edition incorporating minor changes would not be sufficient and that a major revision of the book was in order. Therefore, though the structure of the first «dition was preserved, the text was extensively rewritten and substantially expanded. In particular, references to many interesting and applications of semiring theory, developed in the past few years, had to be added. Unfortunately, I find that it is best not to go into these applications in detail, for that would entail long digressions into various domains of pure and applied mathematics which would only detract from the unity of the volume and increase its length considerably. However, I have tried to provide an extensive collection of examples to arouse the reader's interest in applications, as well as sufficient citations to allow the interested reader to locate them. For the reader's convenience, an index to these citations is given at the end of the book .
This volume presents a short guide to the extensive literature concerning semir ings along with a complete bibliography. The literature has been created over many years, in variety of languages, by authors representing different schools of mathematics and working in various related fields. In many instances the terminology used is not universal, which further compounds the difficulty of locating pertinent sources even in this age of the Internet and electronic dis semination of research results. So far there has been no single reference that could guide the interested scholar or student to the relevant publications. This book is an attempt to fill this gap. My interest in the theory of semirings began in the early sixties, when to gether with Bogdan W ~glorz I tried to investigate some algebraic aspects of compactifications of topological spaces, semirings of semicontinuous functions, and the general ideal theory for special semirings. (Unfortunately, local alge braists in Poland told me at that time that there was nothing interesting in investigating semiring theory because ring theory was still being developed). However, some time later we became aware of some similar investigations hav ing already been done. The theory of semirings has remained "my first love" ever since, and I have been interested in the results in this field that have been appearing in literature (even though I have not been active in this area myself).
This monograph is a continuation of several themes presented in my previous books [146, 149]. In those volumes, I was concerned primarily with the properties of semirings. Here, the objects of investigation are sets of the form RA, where R is a semiring and A is a set having a certain structure. The problem is one of translating that structure to RA in some "natural" way. As such, it tries to find a unified way of dealing with diverse topics in mathematics and theoretical com puter science as formal language theory, the theory of fuzzy algebraic structures, models of optimal control, and many others. Another special case is the creation of "idempotent analysis" and similar work in optimization theory. Unlike the case of the previous work, which rested on a fairly established mathematical foundation, the approach here is much more tentative and docimastic. This is an introduction to, not a definitative presentation of, an area of mathematics still very much in the making. The basic philosphical problem lurking in the background is one stated suc cinctly by Hahle and Sostak [185]: ". . . to what extent basic fields of mathematics like algebra and topology are dependent on the underlying set theory?" The conflicting definitions proposed by various researchers in search of a resolution to this conundrum show just how difficult this problem is to see in a proper light.