Download Free The Theory Of Group Characters And Matrix Representations Of Groups Book in PDF and EPUB Free Download. You can read online The Theory Of Group Characters And Matrix Representations Of Groups and write the review.

Originally written in 1940, this book remains a classical source on representations and characters of finite and compact groups. The book starts with necessary information about matrices, algebras, and groups. Then the author proceeds to representations of finite groups. Of particular interest in this part of the book are several chapters devoted to representations and characters of symmetric groups and the closely related theory of symmetric polynomials. The concluding chapterspresent the representation theory of classical compact Lie groups, including a detailed description of representations of the unitary and orthogonal groups. The book, which can be read with minimal prerequisites (an undergraduate algebra course), allows the reader to get a good understanding ofbeautiful classical results about group representations.
Originally written in 1940, this book remains a classical source on representations and characters of finite and compact groups. The book starts with necessary information about matrices, algebras, and groups. Then the author proceeds to representations of finite groups. Of particular interest in this part of the book are several chapters devoted to representations and characters of symmetric groups and the closely related theory of symmetric polynomials. The concluding chapters present the representation theory of classical compact Lie groups, including a detailed description of representations of the unitary and orthogonal groups. The book, which can be read with minimal prerequisites (an undergraduate algebra course), allows the reader to get a good understanding of beautiful classical results about group representations.
Group representation theory is both elegant and practical, with important applications to quantum mechanics, spectroscopy, crystallography, and other fields in the physical sciences. This book offers an easy-to-follow introduction to the theory of groups and of group characters. Designed as a rapid survey of the subject, it emphasizes examples and applications of the theorems, and avoids many of the longer and more difficult proofs. The text includes sections that provide the mathematical basis for some of the applications of group theory. It also offers numerous exercises, some stressing computation of concrete examples, others stressing development of the theory.
This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians.
Introducing the representation theory of finite groups, this second edition has been revised and updated. The theory is developed in terms of modules with considerable emphasis placed upon constructing characters.
This volume contains a collection of papers from the Conference on Character Theory of Finite Groups, held at the Universitat de Valencia, Spain, on June 3-5, 2009, in honor of I. Martin Isaacs. The topics include permutation groups, character theory, p-groups, and group rings. The research articles feature new results on large normal abelian subgroups of p-groups, construction of certain wreath products, computing idempotents in group algebras of finite groups, and using dual pairs to study representations of cross characteristic in classical groups. The expository articles present results on vertex subgroups, measuring theorems in permutation groups, the development of super character theory, and open problems in character theory.
Representation Theory of Finite Groups is a five chapter text that covers the standard material of representation theory. This book starts with an overview of the basic concepts of the subject, including group characters, representation modules, and the rectangular representation. The succeeding chapters describe the features of representation theory of rings with identity and finite groups. These topics are followed by a discussion of some of the application of the theory of characters, along with some classical theorems. The last chapter deals with the construction of irreducible representations of groups. This book will be of great value to graduate students who wish to acquire some knowledge of representation theory.
Francis D. Murnaghan, a distinguished contributor in the sphere of applied mathematics, created this comprehensive introduction to the theory of group representations. Murnaghan's first-rate account of the field pioneered and developed chiefly by Frobenius, Weyl, and Schur devotes particular attention to the groups—mainly the symmetric group and the rotation group—of fundamental significance for quantum mechanics (especially nuclear physics). Because groups of matrices are the usual group representations, this work is also a valuable contribution to the literature on matrices. The author places particular emphasis on such topics as the theory of group integration, the theory of two-valued or spin representations, the representations of the symmetric group and the analysis of their direct products, the crystallographic groups, and the Lorentz group and the concept of semivectors. Other sections cover groups and matrices, reducibility, group characters, the alternating group, linear groups, and the orthogonal group. This authoritative exposition is of specific interest to teachers and graduate-level students of applied mathematics, physics, and higher algebra.