Download Free The Theory And Method Of Design And Optimization For Railway Intelligent Transportation Systems Rits Book in PDF and EPUB Free Download. You can read online The Theory And Method Of Design And Optimization For Railway Intelligent Transportation Systems Rits and write the review.

This book explains the theory and methods of system optimization design for railway intelligent transportation systems (RITS), which optimizes RITS total performance by decreasing the difficulty and cost of system development and increasing the system efficiency. Readers will understand key concepts of RITS and the latest research relevant to China and other countries where RITSs have been developed. The book is suitable for university scholars in the field of railway transportation.
For many transportation systems, the cost of expanding the infrastructure is too high. Therefore, engineers must shift their focus to improving the quality of transportation within the existing infrastructure. Focusing on highway and railway systems, Intelligent Transportation Systems: New Principles and Architectures provides a radically different
The aim of this book is to present a number of digital and technology solutions to real-world problems across transportation sectors and infrastructures. Nine chapters have been well prepared and organized with the core topics as follows: -A guideline to evaluate the energy efficiency of a vehicle -A guideline to design and evaluate an electric propulsion system -Potential opportunities for intelligent transportation systems and smart cities -The importance of system control and energy-power management in transportation systems and infrastructures -Bespoke modeling tools and real-time simulation platforms for transportation system development This book will be useful to a wide range of audiences: university staff and students, engineers, and business people working in relevant fields.
Scheduled transportation networks give rise to very complex and large-scale networkoptimization problems requiring innovative solution techniques and ideas from mathematical optimization and theoretical computer science. Examples of scheduled transportation include bus, ferry, airline, and railway networks, with the latter being a prime application domain that provides a fair amount of the most complex and largest instances of such optimization problems. Scheduled transport optimization deals with planning and scheduling problems over several time horizons, and substantial progress has been made for strategic planning and scheduling problems in all transportation domains. This state-of-the-art survey presents the outcome of an open call for contributions asking for either research papers or state-of-the-art survey articles. We received 24 submissions that underwent two rounds of the standard peer-review process, out of which 18 were finally accepted for publication. The volume is organized in four parts: Robustness and Recoverability, Robust Timetabling and Route Planning, Robust Planning Under Scarce Resources, and Online Planning: Delay and Disruption Management.
This book promotes the use of mathematical optimization and operations research methods in rail transportation. The editors assembled thirteen contributions from leading scholars to present a unified voice, standardize terminology, and assess the state-of-the-art. There are three main clusters of articles, corresponding to the classical stages of the planning process: strategic, tactical, and operational. These three clusters are further subdivided into five parts which correspond to the main phases of the railway network planning process: network assessment, capacity planning, timetabling, resource planning, and operational planning. Individual chapters cover: Simulation Capacity Assessment Network Design Train Routing Robust Timetabling Event Scheduling Track Allocation Blocking Shunting Rolling Stock Crew Scheduling Dispatching Delay Propagation
Incorporates More Than 25 Years of Research and ExperienceRailway Transportation Systems: Design, Construction and Operation presents a comprehensive overview of railway passenger and freight transport systems, from design through to construction and operation. It covers the range of railway passenger systems, from conventional and high speed inter
As transport networks become more congested, there is a growing need to adopt policies that manage demand and make full use of existing assets. Advances in information technology are now such that intelligent transportation systems (ITS) offer real potential to meet this challenge by monitoring current conditions, predicting what might happen in the future, and providing the means to manage transport proactively and on an area-wide basis. Modeling and Simulation of Intelligent Transportation Systems provides engineers, professionals, and researchers an intuitive appreciation for ITS theory, related sensor technologies, and other practical applications, including traffic management, safety, design optimization, and sustainability. Provides the theory and practical applications of Intelligent Transport Theory which will be helpful as highway construction recedes as a sustainable long-term solution. Includes several case studies that illustrate the concepts presented throughout.
The Intelligent Systems Series encompasses theoretical studies, design methods, and real-world implementations and applications. It publishes titles in three core sub-topic areas: Intelligent Automation, Intelligent Transportation Systems, and Intelligent Computing. Titles focus on professional and academic reference works and handbooks. This volume, Advances in Artificial Transportation Systems and Simulation, covers hot topics including driver assistance systems; cooperative vehicle-highway systems; collision avoidance; pedestrian protection; image, radar and lidar signal processing; and V2V and V2I communications. The readership for the series is broad, reflecting the wide range of intelligent systems interest and application, but focuses on engineering (in particular automation, control, mechatronics, robotics, transportation, automotive, aerospace), electronics and electronic design, and computer science. Provides researchers and engineers with up to date research results and state-of-the art technologies in the area of intelligent vehicles and transportation systems Includes case studies plus surveys of the latest research Covers hot topics including driver assistance systems; cooperative vehicle-highway systems; collision avoidance; pedestrian protection; image, radar and lidar signal processing; V2V and V2I communications
The rail-based transit system is a popular public transportation option, not just with members of the public but also with policy makers looking to install a form of convenient and rapid travel. Even for moving bulk freight long distances, a rail-based system is the most sustainable transportation system currently available. The Handbook of Research on Emerging Innovations in Rail Transportation Engineering presents the latest research on next-generation public transportation infrastructures. Emphasizing a diverse set of topics related to rail-based transportation such as funding issues, policy design, traffic planning and forecasting, and engineering solutions, this comprehensive publication is an essential resource for transportation planners, engineers, policymakers, and graduate-level engineering students interested in uncovering research-based solutions, recommendations, and examples of modern rail transportation systems.
Intelligent Transportation Systems: Functional Design for Economical and Efficient Traffic Management provides practical guidance on the efficient use of resources in the design of ITS. The author explains how functional design alternatives can meet project objectives and requirements with optimal cost effectiveness and clarifies how transportation planning and traffic diversion principles relate to functional ITS device selections and equipment locations. Methodologies for translating objectives to functional device types, determining device deployment densities and determining the best placement of CCTV cameras and message signs are provided, as are models for evaluating the benefits of design alternatives based on traffic conditions. Readers will learn how to reduce recurrent congestion, improve incident clearance time in non-recurrent congestion, provide real-time incident information to motorists, and leverage transportation management center data for lane control through important new active transportation and demand management (ATDM) methods. Finally, the author examines exciting developments in connected vehicle technologies, exploring their potential to greatly improve safety, mobility and energy efficiency. This resource will greatly benefit all ITS designers and managers and is of pivotal importance for operating agencies performing evaluations to justify operational funding and system expansions.