Download Free The Telecommunications And Data Acquisition Progress Report Book in PDF and EPUB Free Download. You can read online The Telecommunications And Data Acquisition Progress Report and write the review.

An introduction to antenna Arraying in the Deep Space network Antenna arraying is the combining of the output from several antennas in order to improve the signal-to-noise ratio (SNR) of the received signal. Now implemented at the Goldstone Complex and other Deep Space Network (DSN) overseas facilities, antenna arraying provides flexible use of multiple antennas to increase data rates and has enabled NASA's DSN to extend the missions of some spacecraft beyond their planned lifetimes. Antenna Arraying Techniques in the Deep Space Network introduces the development and use of antenna arraying as it is implemented in the DSN. Drawing on the work of scientists at JPL, this timely volume summarizes the development of antenna arraying and its historical background; describes key concepts and techniques; analyzes and compares several methods of arraying; discusses several correlation techniques used for obtaining the combined weights; presents the results of several arraying experiments; and suggests directions for future work. An important contribution to the scientific literature, Antenna Arraying Techniques in the Deep Space Network * Was commissioned by the JPL Deep Space Communications and Navigation Systems (DESCANSO) Center of Excellence * Highlights many NASA-funded technical contributions pertaining to deep space communications systems * Is a part of the prestigious JPL Deep Space Communications and Navigation Series The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.
DEEP SPACE COMMUNICATIONS A COLLECTION OF SOME OF THE JET PROPULSION LABORATORY’S SPACE MISSIONS SELECTED TO REPRESENT THE PLANETARY COMMUNICATIONS DESIGNS FOR A PROGRESSION OF VARIOUS TYPES OF MISSIONS The text uses a case study approach to show the communications link performance resulting from the planetary communications design developed by the Jet Propulsion Laboratory (JPL). This is accomplished through the description of the design and performance of six representative planetary missions. These six cases illustrate progression through time of the communications system’s capabilities and performance from 1970s technology to the most recent missions. The six missions discussed in this book span the Voyager for fly-bys in the 1970s, Galileo for orbiters in the 1980s, Deep Space 1 for the 1990s, Mars Reconnaissance Orbiter (MRO) for planetary orbiters, Mars Exploration Rover (MER) for planetary rovers in the 2000s, and the MSL rover in the 2010s. Deep Space Communications: Provides an overview of the Deep Space Network and its capabilities Examines case studies to illustrate the progression of system design and performance from mission to mission and provides a broad overview of the mission systems described Discusses actual flight mission telecommunications performance of each system Deep Space Communications serves as a reference for scientists and engineers interested in communications systems for deep-space telecommunications link analysis and design control.
A quarter century of research into deep space and near Earth optical communications This book captures a quarter century of research and development in deep space optical communications from the Jet Propulsion Laboratory (JPL). Additionally, it presents findings from other optical communications research groups from around the world for a full perspective. Readers are brought up to date with the latest developments in optical communications technology, as well as the state of the art in component and subsystem technologies, fundamental limitations, and approaches to develop and fully exploit new technologies. The book explores the unique requirements and technologies for deep space optical communications, including: * Technology overview; link and system design drivers * Atmospheric transmission, propagation, and reception issues * Flight and ground terminal architecture and subsystems * Future prospects and applications, including navigational tracking and light science This is the first book to specifically address deep space optical communications. With an increasing demand for data from planetary spacecraft and other sources, it is essential reading for all optical communications, telecommunications, and system engineers, as well as technical managers in the aerospace industry. It is also recommended for graduate students interested in deep space communications.