Download Free The Synthesis Of Some Boron Nitrogen Heterocyclic Compounds Book in PDF and EPUB Free Download. You can read online The Synthesis Of Some Boron Nitrogen Heterocyclic Compounds and write the review.

Although the chemistry of boron is still relatively young, it is developing at a pace where even specific areas of research are difficult to compile into a monograph. Besides the boron hydrides, boron-nitrogen compounds are among the most fascinating derivatives of boron. Nitrogen compounds exist in a wide variety of molecular structures and display many interesting properties. The combination of nitrogen and boron, however, has some unusual features that are hard to match in any other combination of elements. This situation was first recognized by ALFRED STOCK and it seems proper to pay tribute to his outstanding work in the area of boron chemistry. One should realize that about forty years ago, STOCK and his coworkers had to develop completely new experimental techniq'\les and that no guidance for the interpreta tion of their rather unusual data had been advanced by theoretical chemists. In this monograph an attempt has been made to explore the general characteristics of structure and the principles involved in the preparation and reactions of boron-nitroge~ compounds. It was a somewhat difficult task to select that information which appears to be of the most interest to "inorganic and general chemistry" since the electronic relationship between a boron-nitrogen and a carbon-carbon grouping is reflected in the "organic" character of many of the reactions and compounds.
The widespread use of organoboron compounds justifies the efforts devoted to their synthesis, as well as toward developing an understanding of their reactivity. The nature of the mono- or diboron species is of paramount importance in determining the reversible covalent binding properties of the boron atom with both nucleophiles and electrophiles. By wedding the rich chemical potential of organoboron compounds to the ubiquity of organic scaffolds, advanced borylation reactions have the potential to open unprecedented synthetic alternatives, and new knowledge in the field should encourage chemists to use organoboron compounds. In this volume, the main objective is to provide a collection of the most useful, practical, and reliable methods, reported mainly within the last decade, for boron activation and boron reactivity. The volume covers the main concepts of organoboron compounds and includes experimental procedures, enabling newcomers to the field the instant and reliable application of the new tools in synthesis. Rather than aiming for a comprehensive coverage, the most advanced solutions for challenging transformations are introduced. To this end, a team of pioneers and leaders in the field have been assembled who discuss both the practical and conceptual aspects of this rapidly growing field.
(Cont.) Our studies indicate that unfavorable peri-interactions between the imine substrate and the Lewis acid may be the conformation-controlling element for nucleophilic additions to imines. On the other hand, detailed mechanistic studies of the Mukaiyama aldol reaction suggest a reaction pathway involving an intermediate with a coplanar aldehyde-Lewis acid conformation. These studies demonstrate the broad scope and the high efficiency with which the chiral information is transferred from the planar-chiral Lewis acid to its substrates. Consequently, the turnover step (regeneration of the active Lewis acid) represents the last hurdle to be addressed for achieving asymmetric Lewis acid catalysis. Part III of this thesis describes miscellaneous applications that have been discovered during the course of the development of 1,2-azaborolyl-based planar-chiral Lewis acids. In Chapter 7, we present a surprisingly mild and versatile method for palladium-catalyzed Suzuki cross-couplings of aryl chlorides in the presence of a triarylphosphine. With this catalytic system, both sterically demanding and electronically deactivated aryl chlorides can be efficiently coupled with a range of boronic acids in good yields, and coupling of activated aryl chlorides can be accomplished at room temperature. In Chapter 8, we report the synthesis and characterization of novel 1,2-azaborines and their potential as benzene surrogates.
The Neilson group has developed a broad spectrum of derivative chemistry originating from the study of boron compounds containing silicon-nitrogen functional groups. Some of our current research interests have focused on investigating compounds containing Si-N moieties attached to a 4-substituted aryl (Ar) functionality to afford silylanilino derivatives. Due to the variety of reactions that can occur at the boron center, combined with the reactivity of the Si-N bond, some of these compounds have the potential to be precursors to new cyclic and/or polymeric systems, for example poly(phenylene-borazenes), i.e. new inorganic-organic hybrid polymers in which the borazene ( -BR-NR'- ) and arylene ( -C6H4- ) units alternate along the backbone. The work to be presented focuses on the synthesis, characterization and reactivity of some representative examples of 4-aryl substituted (silylanilino)boranes. To be discussed are two classes of title compounds of type I, (silylanilino)boranes with the Ar-N-B backbone, and type II, (silylanilino)boranes with the B-Ar-N backbone. With.