Download Free The Standard Model For Electroweak Interactions Book in PDF and EPUB Free Download. You can read online The Standard Model For Electroweak Interactions and write the review.

A graduate-level description of how the theory of electroweak interactions, or so-called "Standard Model" unifies the weak and electromagnetic forces of nature in high energy physics.
Introduction to the Physics of Electroweak Interactions is a six-chapter book that first elucidates the deep-inelastic and elastic lepton scattering on nucleons (both cases of polarized and nonpolarized initial particles). Subsequent chapter presents a brief history of the construction of the phenomenological V-A weak interaction Hamiltonian. Other chapters detail the Glashow-Weinberg-Salam unified theory of weak and electromagnetic interactions; the processes in which neutrinos take part; and processes due to neutral currents, deep-inelastic neutrino-nucleon scattering, elastic neutrino-nucleon scattering, and elastic neutrino-electron scattering. This book will be useful to those who wish to master the techniques for calculating the experimentally measured quantities.
The standard model in particle physics unifies the theories of electromagnetic and weak interactions. Much work has been over the last decade, and this book describes some of the leading experimental tests of the model. It is unique in collecting in one volume all of the formulas, recipes, and prescriptions necessary for testing the theory and will be an invaluable tool as experiments move into higher energies. It aims to give a comprehensive exposition of the foundations of the Standard Model and its applications to high energy phenomena.
This textbook gives a comprehensive summary of the gauge theories of the fundamental interactions. The authors stress the intimate connection between the basic experimental facts and the formulation of gauge theories of the strong and electroweak interaction. The concepts and technical tools of quantum field theory are presented. They are used to derive precision results of quantum chromodynamics and the standard model of the electroweak interaction of experiments in elementary particle physics. The book includes the latest experimental results and presents the actual status of the theory.
This book is based on the lecture course taught by the author for about three decades at Charles University. The author gives a thorough and easy-to-read account of the basic principles of the standard model of electroweak interactions, describes various theories of electromagnetic and weak interactions, and explains the gauge theory of electroweak interactions. The criterion of the tree-level unitarity is used throughout the text to check the gradual steps leading to the renormalizable electroweak theory. Five appendices expound on some special techniques of the Standard Model, used in the main body of the text.The book can be read with just a preliminary knowledge of quantum field theory. In comparison with the first edition of the book published more than 20 years ago, new passages concerning the Higgs boson are added, as well as some new problems and solutions.
This book offers a self-contained introduction to the theory of electroweak interactions based on the semi-classical approach to relativistic quantum field theory, with thorough discussion of key aspects of the field. The basic tools for the calculation of cross sections and decay rates in the context of relativistic quantum field theory are reviewed in a short, but complete and rigorous, presentation. Special attention is focused on relativistic scattering theory and on calculation of amplitude in the semi-classical approximation. The central part of the book is devoted to an illustration of the unified field theory of electromagnetic and weak interactions as a quantum field theory with spontaneously broken gauge invariance; particular emphasis is placed on experimental confirmations of the theory. The closing chapters address the most recent developments in electroweak phenomenology and provide an introduction to the theory and phenomenology of neutrino oscillations. In this 2nd edition the discussion of relativistic scattering processes in the semi-classical approximation has been revised and as a result intermediate results are now explicitly proven. Furthermore, the recent discovery of the Higgs boson is now taken into account throughout the book. In particular, the Higgs decay channel into a pair of photons, which has played a crucial role in the discovery, is discussed. As in the first edition, the accent is still on the semi-classical approximation. However, in view of the necessity of a discussion of H !, the authors give several indications about corrections to the semiclassical approximation. Violation of unitarity is discussed in more detail, including the dispersion relations as a tool for computing loop corrections; the above-mentioned Higgs decay channel is illustrated by means of a full one-loop calculation; and finally, loop effects on the production of unstable particles (such as the Z0 boson) are now discussed. Finally, the neutrino mass and oscillation analysis is updated taking into account the major achievements of the last years.
This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examines supersymmetry, extended gauge groups, and grand unification. Thoroughly covering gauge field theories, symmetries, and topics beyond the standard model, this text equips readers with the tools to understand the structure and phenomenological consequences of the standard model, to construct extensions, and to perform calculations at tree level. It establishes the necessary background for readers to carry out more advanced research in particle physics. Supplementary materials are provided on the author’s website and a solutions manual is available for qualifying instructors.
This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
This 2014 edition, now OA, provides a detailed and practical account of the Standard Model of particle physics.