Download Free The Spirit And The Uses Of The Mathematical Sciences Book in PDF and EPUB Free Download. You can read online The Spirit And The Uses Of The Mathematical Sciences and write the review.

An era of sweeping cultural change in America, the postwar years saw the rise of beatniks and hippies, the birth of feminism, and the release of the first video game. It was also the era of new math. Introduced to US schools in the late 1950s and 1960s, the new math was a curricular answer to Cold War fears of American intellectual inadequacy. In the age of Sputnik and increasingly sophisticated technological systems and machines, math class came to be viewed as a crucial component of the education of intelligent, virtuous citizens who would be able to compete on a global scale. In this history, Christopher J. Phillips examines the rise and fall of the new math as a marker of the period’s political and social ferment. Neither the new math curriculum designers nor its diverse legions of supporters concentrated on whether the new math would improve students’ calculation ability. Rather, they felt the new math would train children to think in the right way, instilling in students a set of mental habits that might better prepare them to be citizens of modern society—a world of complex challenges, rapid technological change, and unforeseeable futures. While Phillips grounds his argument in shifting perceptions of intellectual discipline and the underlying nature of mathematical knowledge, he also touches on long-standing debates over the place and relevance of mathematics in liberal education. And in so doing, he explores the essence of what it means to be an intelligent American—by the numbers.
Does God exist? This is probably the most debated question in the history of mankind. Scholars, scientists, and philosophers have spent their lifetimes trying to prove or disprove the existence of God, only to have their theories crucified by other scholars, scientists, and philosophers. Where the debate breaks down is in the ambiguities and colloquialisms of language. But, by using a universal, unambiguous language—namely, mathematics—can this question finally be answered definitively? That’s what Dr. Stephen Unwin attempts to do in this riveting, accessible, and witty book, The Probability of God. At its core, this groundbreaking book reveals how a math equation developed more than 200 years ago by noted European philosopher Thomas Bayes can be used to calculate the probability that God exists. The equation itself is much more complicated than a simple coin toss (heads, He’s up there running the show; tails, He’s not). Yet Dr. Unwin writes with a clarity that makes his mathematical proof easy for even the nonmathematician to understand and a verve that makes his book a delight to read. Leading you carefully through each step in his argument, he demonstrates in the end that God does indeed exist. Whether you’re a devout believer and agree with Dr. Unwin’s proof or are unsure about all things divine, you will find this provocative book enlightening and engaging. “One of the most innovative works [in the science and religion movement] is The Probability of God...An entertaining exercise in thinking.”—Michael Shermer, Scientific American “Unwin’s book [is] peppered with wry, self-deprecating humor that makes the scientific discussions more accessible...Spiritually inspiring.”--Chicago Sun Times “A pleasantly breezy account of some complicated matters well worth learning about.”--Philadelphia Inquirer “One of the best things about the book is its humor.”--Cleveland Plain Dealer “In a book that is surprisingly lighthearted and funny, Unwin manages to pack in a lot of facts about science and philosophy.”--Salt Lake Tribune
Mathematics as a Cultural System discusses the relationship between mathematics and culture. The book is comprised of eight chapters discussing topics that support the concept of mathematics as a cultural system. Chapter I deals with the nature of culture and cultural systems, while Chapter 2 provides examples of cultural patterns observable in the evolution of mechanics. Chapter III treats historical episodes as a laboratory for the illustration of patterns and forces that have been operative in cultural change. Chapter IV covers hereditary stress, and Chapter V discusses consolidation as a force and process. Chapter VI talks about the singularities in the evolution of mechanics, while Chapter 7 deals with the laws governing the evolution of mathematics. Chapter VIII tackles the role and future of mathematics. The book will be of great interest to readers who are curious about how mathematics relates to culture.
Winner of the 1983 National Book Award! "...a perfectly marvelous book about the Queen of Sciences, from which one will get a real feeling for what mathematicians do and who they are. The exposition is clear and full of wit and humor..." - The New Yorker (1983 National Book Award edition) Mathematics has been a human activity for thousands of years. Yet only a few people from the vast population of users are professional mathematicians, who create, teach, foster, and apply it in a variety of situations. The authors of this book believe that it should be possible for these professional mathematicians to explain to non-professionals what they do, what they say they are doing, and why the world should support them at it. They also believe that mathematics should be taught to non-mathematics majors in such a way as to instill an appreciation of the power and beauty of mathematics. Many people from around the world have told the authors that they have done precisely that with the first edition and they have encouraged publication of this revised edition complete with exercises for helping students to demonstrate their understanding. This edition of the book should find a new generation of general readers and students who would like to know what mathematics is all about. It will prove invaluable as a course text for a general mathematics appreciation course, one in which the student can combine an appreciation for the esthetics with some satisfying and revealing applications. The text is ideal for 1) a GE course for Liberal Arts students 2) a Capstone course for perspective teachers 3) a writing course for mathematics teachers. A wealth of customizable online course materials for the book can be obtained from Elena Anne Marchisotto ([email protected]) upon request.
Winner of the Mathematics Association of America's 2021 Euler Book Prize, this is an inclusive vision of mathematics—its beauty, its humanity, and its power to build virtues that help us all flourish“This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart.”—James Tanton, Global Math Project"A good book is an entertaining read. A great book holds up a mirror that allows us to more clearly see ourselves and the world we live in. Francis Su’s Mathematics for Human Flourishing is both a good book and a great book."—MAA Reviews For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity’s most beautiful ideas.In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award‑winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires—such as for play, beauty, freedom, justice, and love—and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother’s, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher’s letters to the author appear throughout the book and show how this intellectual pursuit can—and must—be open to all.
In this 2005 book, logic, mathematical knowledge and objects are explored alongside reason and intuition in the exact sciences.
The first history of postwar mathematics, offering a new interpretation of the rise of abstraction and axiomatics in the twentieth century. Why did abstraction dominate American art, social science, and natural science in the mid-twentieth century? Why, despite opposition, did abstraction and theoretical knowledge flourish across a diverse set of intellectual pursuits during the Cold War? In recovering the centrality of abstraction across a range of modernist projects in the United States, Alma Steingart brings mathematics back into the conversation about midcentury American intellectual thought. The expansion of mathematics in the aftermath of World War II, she demonstrates, was characterized by two opposing tendencies: research in pure mathematics became increasingly abstract and rarified, while research in applied mathematics and mathematical applications grew in prominence as new fields like operations research and game theory brought mathematical knowledge to bear on more domains of knowledge. Both were predicated on the same abstractionist conception of mathematics and were rooted in the same approach: modern axiomatics. For American mathematicians, the humanities and the sciences did not compete with one another, but instead were two complementary sides of the same epistemological commitment. Steingart further reveals how this mathematical epistemology influenced the sciences and humanities, particularly the postwar social sciences. As mathematics changed, so did the meaning of mathematization. Axiomatics focuses on American mathematicians during a transformative time, following a series of controversies among mathematicians about the nature of mathematics as a field of study and as a body of knowledge. The ensuing debates offer a window onto the postwar development of mathematics band Cold War epistemology writ large. As Steingart’s history ably demonstrates, mathematics is the social activity in which styles of truth—here, abstraction—become synonymous with ways of knowing.
This helpful "bridge" book offers students the foundations they need to understand advanced mathematics. The two-part treatment provides basic tools and covers sets, relations, functions, mathematical proofs and reasoning, more. 1975 edition.