Download Free The Spectral Analysis Of Time Series Book in PDF and EPUB Free Download. You can read online The Spectral Analysis Of Time Series and write the review.

The Spectral Analysis of Time Series describes the techniques and theory of the frequency domain analysis of time series. The book discusses the physical processes and the basic features of models of time series. The central feature of all models is the existence of a spectrum by which the time series is decomposed into a linear combination of sines and cosines. The investigator can used Fourier decompositions or other kinds of spectrals in time series analysis. The text explains the Wiener theory of spectral analysis, the spectral representation for weakly stationary stochastic processes, and the real spectral representation. The book also discusses sampling, aliasing, discrete-time models, linear filters that have general properties with applications to continuous-time processes, and the applications of multivariate spectral models. The text describes finite parameter models, the distribution theory of spectral estimates with applications to statistical inference, as well as sampling properties of spectral estimates, experimental design, and spectral computations. The book is intended either as a textbook or for individual reading for one-semester or two-quarter course for students of time series analysis users. It is also suitable for mathematicians or professors of calculus, statistics, and advanced mathematics.
This book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas. Rapidly increasing number of novel applications of SSA is a consequence of the new fundamental research on SSA and the recent progress in computing and software engineering which made it possible to use SSA for very complicated tasks that were unthinkable twenty years ago. In this book, the methodology of SSA is concisely but at the same time comprehensively explained by two prominent statisticians with huge experience in SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The second edition of the book contains many updates and some new material including a thorough discussion on the place of SSA among other methods and new sections on multivariate and multidimensional extensions of SSA.
Spectral analysis is widely used to interpret time series collected in diverse areas. This book covers the statistical theory behind spectral analysis and provides data analysts with the tools needed to transition theory into practice. Actual time series from oceanography, metrology, atmospheric science and other areas are used in running examples throughout, to allow clear comparison of how the various methods address questions of interest. All major nonparametric and parametric spectral analysis techniques are discussed, with emphasis on the multitaper method, both in its original formulation involving Slepian tapers and in a popular alternative using sinusoidal tapers. The authors take a unified approach to quantifying the bandwidth of different nonparametric spectral estimates. An extensive set of exercises allows readers to test their understanding of theory and practical analysis. The time series used as examples and R language code for recreating the analyses of the series are available from the book's website.
. . ) (under the assumption that the spectral density exists). For this reason, a vast amount of periodical and monographic literature is devoted to the nonparametric statistical problem of estimating the function tJ( T) and especially that of leA) (see, for example, the books [4,21,22,26,56,77,137,139,140,]). However, the empirical value t;; of the spectral density I obtained by applying a certain statistical procedure to the observed values of the variables Xl' . . . , X , usually depends in n a complicated manner on the cyclic frequency). . This fact often presents difficulties in applying the obtained estimate t;; of the function I to the solution of specific problems rela ted to the process X . Theref ore, in practice, the t obtained values of the estimator t;; (or an estimator of the covariance function tJ~( T» are almost always "smoothed," i. e. , are approximated by values of a certain sufficiently simple function 1 = 1
To tailor time series models to a particular physical problem and to follow the working of various techniques for processing and analyzing data, one must understand the basic theory of spectral (frequency domain) analysis of time series. This classic book provides an introduction to the techniques and theories of spectral analysis of time series. In a discursive style, and with minimal dependence on mathematics, the book presents the geometric structure of spectral analysis. This approach makes possible useful, intuitive interpretations of important time series parameters and provides a unified framework for an otherwise scattered collection of seemingly isolated results.The books strength lies in its applicability to the needs of readers from many disciplines with varying backgrounds in mathematics. It provides a solid foundation in spectral analysis for fields that include statistics, signal process engineering, economics, geophysics, physics, and geology. Appendices provide details and proofs for those who are advanced in math. Theories are followed by examples and applications over a wide range of topics such as meteorology, seismology, and telecommunications.Topics covered include Hilbert spaces; univariate models for spectral analysis; multivariate spectral models; sampling, aliasing, and discrete-time models; real-time filtering; digital filters; linear filters; distribution theory; sampling properties ofspectral estimates; and linear prediction. - Hilbert spaces - univariate models for spectral analysis - multivariate spectral models - sampling, aliasing, and discrete-time models - real-time filtering - digital filters - linear filters - distribution theory - sampling properties of spectral estimates - linear prediction
This book is an up-to-date introduction to univariate spectral analysis at the graduate level, which reflects a new scientific awareness of spectral complexity, as well as the widespread use of spectral analysis on digital computers with considerable computational power. The text provides theoretical and computational guidance on the available techniques, emphasizing those that work in practice. Spectral analysis finds extensive application in the analysis of data arising in many of the physical sciences, ranging from electrical engineering and physics to geophysics and oceanography. A valuable feature of the text is that many examples are given showing the application of spectral analysis to real data sets. Special emphasis is placed on the multitaper technique, because of its practical success in handling spectra with intricate structure, and its power to handle data with or without spectral lines. The text contains a large number of exercises, together with an extensive bibliography.
The term singular spectrum comes from the spectral (eigenvalue) decomposition of a matrix A into its set (spectrum) of eigenvalues. These eigenvalues, A, are the numbers that make the matrix A -AI singular. The term singular spectrum analysis· is unfortunate since the traditional eigenvalue decomposition involving multivariate data is also an analysis of the singular spectrum. More properly, singular spectrum analysis (SSA) should be called the analysis of time series using the singular spectrum. Spectral decomposition of matrices is fundamental to much the ory of linear algebra and it has many applications to problems in the natural and related sciences. Its widespread use as a tool for time series analysis is fairly recent, however, emerging to a large extent from applications of dynamical systems theory (sometimes called chaos theory). SSA was introduced into chaos theory by Fraedrich (1986) and Broomhead and King (l986a). Prior to this, SSA was used in biological oceanography by Colebrook (1978). In the digi tal signal processing community, the approach is also known as the Karhunen-Loeve (K-L) expansion (Pike et aI., 1984). Like other techniques based on spectral decomposition, SSA is attractive in that it holds a promise for a reduction in the dimen- • Singular spectrum analysis is sometimes called singular systems analysis or singular spectrum approach. vii viii Preface sionality. This reduction in dimensionality is often accompanied by a simpler explanation of the underlying physics.
This book presents an accessible approach to understanding time series models and their applications. The ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment.
This new edition of this classic title, now in its seventh edition, presents a balanced and comprehensive introduction to the theory, implementation, and practice of time series analysis. The book covers a wide range of topics, including ARIMA models, forecasting methods, spectral analysis, linear systems, state-space models, the Kalman filters, nonlinear models, volatility models, and multivariate models. It also presents many examples and implementations of time series models and methods to reflect advances in the field. Highlights of the seventh edition: A new chapter on univariate volatility models A revised chapter on linear time series models A new section on multivariate volatility models A new section on regime switching models Many new worked examples, with R code integrated into the text The book can be used as a textbook for an undergraduate or a graduate level time series course in statistics. The book does not assume many prerequisites in probability and statistics, so it is also intended for students and data analysts in engineering, economics, and finance.