Download Free The Sparse Grid Based Nonlinear Filter Book in PDF and EPUB Free Download. You can read online The Sparse Grid Based Nonlinear Filter and write the review.

Grid-based Nonlinear Estimation and its Applications presents new Bayesian nonlinear estimation techniques developed in the last two decades. Grid-based estimation techniques are based on efficient and precise numerical integration rules to improve performance of the traditional Kalman filtering based estimation for nonlinear and uncertainty dynamic systems. The unscented Kalman filter, Gauss-Hermite quadrature filter, cubature Kalman filter, sparse-grid quadrature filter, and many other numerical grid-based filtering techniques have been introduced and compared in this book. Theoretical analysis and numerical simulations are provided to show the relationships and distinct features of different estimation techniques. To assist the exposition of the filtering concept, preliminary mathematical review is provided. In addition, rather than merely considering the single sensor estimation, multiple sensor estimation, including the centralized and decentralized estimation, is included. Different decentralized estimation strategies, including consensus, diffusion, and covariance intersection, are investigated. Diverse engineering applications, such as uncertainty propagation, target tracking, guidance, navigation, and control, are presented to illustrate the performance of different grid-based estimation techniques.
Nonlinear Filtering covers linear and nonlinear filtering in a comprehensive manner, with appropriate theoretic and practical development. Aspects of modeling, estimation, recursive filtering, linear filtering, and nonlinear filtering are presented with appropriate and sufficient mathematics. A modeling-control-system approach is used when applicable, and detailed practical applications are presented to elucidate the analysis and filtering concepts. MATLAB routines are included, and examples from a wide range of engineering applications - including aerospace, automated manufacturing, robotics, and advanced control systems - are referenced throughout the text.
Nonlinear Estimation: Methods and Applications with Deterministic Sample Points focusses on a comprehensive treatment of deterministic sample point filters (also called Gaussian filters) and their variants for nonlinear estimation problems, for which no closed-form solution is available in general. Gaussian filters are becoming popular with the designers due to their ease of implementation and real time execution even on inexpensive or legacy hardware. The main purpose of the book is to educate the reader about a variety of available nonlinear estimation methods so that the reader can choose the right method for a real life problem, adapt or modify it where necessary and implement it. The book can also serve as a core graduate text for a course on state estimation. The book starts from the basic conceptual solution of a nonlinear estimation problem and provides an in depth coverage of (i) various Gaussian filters such as the unscented Kalman filter, cubature and quadrature based filters, Gauss-Hermite filter and their variants and (ii) Gaussian sum filter, in both discrete and continuous-discrete domain. Further, a brief description of filters for randomly delayed measurement and two case-studies are also included. Features: The book covers all the important Gaussian filters, including filters with randomly delayed measurements. Numerical simulation examples with detailed matlab code are provided for most algorithms so that beginners can verify their understanding. Two real world case studies are included: (i) underwater passive target tracking, (ii) ballistic target tracking. The style of writing is suitable for engineers and scientists. The material of the book is presented with the emphasis on key ideas, underlying assumptions, algorithms, and properties. The book combines rigorous mathematical treatment with matlab code, algorithm listings, flow charts and detailed case studies to deepen understanding.
Over the last few decades, both the aeronautics and space disciplines have greatly influenced advances in controls, sensors, data fusion and navigation. Many of those achievements that made the word “aerospace” synonymous with “high–tech” were enabled by innovations in guidance, navigation and control. Europe has seen a strong trans-national consolidation process in aerospace over the last few decades. Most of the visible products, like commercial aircraft, fighters, helicopters, satellites, launchers or missiles, are not made by a single country – they are the fruits of cooperation. No European country by itself hosts a specialized guidance, navigation and controls community large enough to cover the whole spectrum of disciplines. However, on a European scale, mutual exchange of ideas, concepts and solutions is enriching for all. The 1st CEAS Specialist Conference on Guidance, Navigation and Control is an attempt to bring this community together. This book is a selection of papers presented at the conference. All submitted papers have gone through a formal review process in compliance with good journal practices. The best papers have been recommended by the reviewers to be published in this book.
This book includes original, peer-reviewed research papers from the ICAUS 2022, which offers a unique and interesting platform for scientists, engineers and practitioners throughout the world to present and share their most recent research and innovative ideas. The aim of the ICAUS 2022 is to stimulate researchers active in the areas pertinent to intelligent unmanned systems. The topics covered include but are not limited to Unmanned Aerial/Ground/Surface/Underwater Systems, Robotic, Autonomous Control/Navigation and Positioning/ Architecture, Energy and Task Planning and Effectiveness Evaluation Technologies, Artificial Intelligence Algorithm/Bionic Technology and Its Application in Unmanned Systems. The papers showcased here share the latest findings on Unmanned Systems, Robotics, Automation, Intelligent Systems, Control Systems, Integrated Networks, Modeling and Simulation. It makes the book a valuable asset for researchers, engineers, and university students alike.
The idea of the 1st International Conference on Intelligent Computing and Applications (ICICA 2014) is to bring the Research Engineers, Scientists, Industrialists, Scholars and Students together from in and around the globe to present the on-going research activities and hence to encourage research interactions between universities and industries. The conference provides opportunities for the delegates to exchange new ideas, applications and experiences, to establish research relations and to find global partners for future collaboration. The proceedings covers latest progresses in the cutting-edge research on various research areas of Image, Language Processing, Computer Vision and Pattern Recognition, Machine Learning, Data Mining and Computational Life Sciences, Management of Data including Big Data and Analytics, Distributed and Mobile Systems including Grid and Cloud infrastructure, Information Security and Privacy, VLSI, Electronic Circuits, Power Systems, Antenna, Computational fluid dynamics & Heat transfer, Intelligent Manufacturing, Signal Processing, Intelligent Computing, Soft Computing, Bio-informatics, Bio Computing, Web Security, Privacy and E-Commerce, E-governance, Service Orient Architecture, Data Engineering, Open Systems, Optimization, Communications, Smart wireless and sensor Networks, Smart Antennae, Networking and Information security, Machine Learning, Mobile Computing and Applications, Industrial Automation and MES, Cloud Computing, Green IT, IT for Rural Engineering, Business Computing, Business Intelligence, ICT for Education for solving hard problems, and finally to create awareness about these domains to a wider audience of practitioners.
The three volume set LNCS 8834, LNCS 8835, and LNCS 8836 constitutes the proceedings of the 20th International Conference on Neural Information Processing, ICONIP 2014, held in Kuching, Malaysia, in November 2014. The 231 full papers presented were carefully reviewed and selected from 375 submissions. The selected papers cover major topics of theoretical research, empirical study, and applications of neural information processing research. The 3 volumes represent topical sections containing articles on cognitive science, neural networks and learning systems, theory and design, applications, kernel and statistical methods, evolutionary computation and hybrid intelligent systems, signal and image processing, and special sessions intelligent systems for supporting decision, making processes,theories and applications, cognitive robotics, and learning systems for social network and web mining.
There has been an increasing interest in multi-disciplinary research on multisensor attitude estimation technology driven by its versatility and diverse areas of application, such as sensor networks, robotics, navigation, video, biomedicine, etc. Attitude estimation consists of the determination of rigid bodies’ orientation in 3D space. This research area is a multilevel, multifaceted process handling the automatic association, correlation, estimation, and combination of data and information from several sources. Data fusion for attitude estimation is motivated by several issues and problems, such as data imperfection, data multi-modality, data dimensionality, processing framework, etc. While many of these problems have been identified and heavily investigated, no single data fusion algorithm is capable of addressing all the aforementioned challenges. The variety of methods in the literature focus on a subset of these issues to solve, which would be determined based on the application in hand. Historically, the problem of attitude estimation has been introduced by Grace Wahba in 1965 within the estimate of satellite attitude and aerospace applications. This book intends to provide the reader with both a generic and comprehensive view of contemporary data fusion methodologies for attitude estimation, as well as the most recent researches and novel advances on multisensor attitude estimation task. It explores the design of algorithms and architectures, benefits, and challenging aspects, as well as a broad array of disciplines, including: navigation, robotics, biomedicine, motion analysis, etc. A number of issues that make data fusion for attitude estimation a challenging task, and which will be discussed through the different chapters of the book, are related to: 1) The nature of sensors and information sources (accelerometer, gyroscope, magnetometer, GPS, inclinometer, etc.); 2) The computational ability at the sensors; 3) The theoretical developments and convergence proofs; 4) The system architecture, computational resources, fusion level.
Small satellites use commercial off-the-shelf sensors and actuators for attitude determination and control (ADC) to reduce the cost. These sensors and actuators are usually not as robust as the available, more expensive, space-proven equipment. As a result, the ADC system of small satellites is more vulnerable to any fault compared to a system for larger competitors. This book aims to present useful solutions for fault tolerance in ADC systems of small satellites. The contents of the book can be divided into two categories: fault tolerant attitude filtering algorithms for small satellites and sensor calibration methods to compensate the sensor errors. MATLAB® will be used to demonstrate simulations. Presents fault tolerant attitude estimation algorithms for small satellites with an emphasis on algorithms’ practicability and applicability Incorporates fundamental knowledge about the attitude determination methods at large Discusses comprehensive information about attitude sensors for small satellites Reviews calibration algorithms for small satellite magnetometers with simulated examples Supports theory with MATLAB simulation results which can be easily understood by individuals without a comprehensive background in this field Covers up-to-date discussions for small satellite attitude systems design Dr. Chingiz Hajiyev is a professor at the Faculty of Aeronautics and Astronautics, Istanbul Technical University (Istanbul, Turkey). Dr. Halil Ersin Soken is an assistant professor at the Aerospace Engineering Department, Middle East Technical University (Ankara, Turkey).
This Second Volume in the series Handbook of Dynamic Data Driven Applications Systems (DDDAS) expands the scope of the methods and the application areas presented in the first Volume and aims to provide additional and extended content of the increasing set of science and engineering advances for new capabilities enabled through DDDAS. The methods and examples of breakthroughs presented in the book series capture the DDDAS paradigm and its scientific and technological impact and benefits. The DDDAS paradigm and the ensuing DDDAS-based frameworks for systems’ analysis and design have been shown to engender new and advanced capabilities for understanding, analysis, and management of engineered, natural, and societal systems (“applications systems”), and for the commensurate wide set of scientific and engineering fields and applications, as well as foundational areas. The DDDAS book series aims to be a reference source of many of the important research and development efforts conducted under the rubric of DDDAS, and to also inspire the broader communities of researchers and developers about the potential in their respective areas of interest, of the application and the exploitation of the DDDAS paradigm and the ensuing frameworks, through the examples and case studies presented, either within their own field or other fields of study. As in the first volume, the chapters in this book reflect research work conducted over the years starting in the 1990’s to the present. Here, the theory and application content are considered for: Foundational Methods Materials Systems Structural Systems Energy Systems Environmental Systems: Domain Assessment & Adverse Conditions/Wildfires Surveillance Systems Space Awareness Systems Healthcare Systems Decision Support Systems Cyber Security Systems Design of Computer Systems The readers of this book series will benefit from DDDAS theory advances such as object estimation, information fusion, and sensor management. The increased interest in Artificial Intelligence (AI), Machine Learning and Neural Networks (NN) provides opportunities for DDDAS-based methods to show the key role DDDAS plays in enabling AI capabilities; address challenges that ML-alone does not, and also show how ML in combination with DDDAS-based methods can deliver the advanced capabilities sought; likewise, infusion of DDDAS-like approaches in NN-methods strengthens such methods. Moreover, the “DDDAS-based Digital Twin” or “Dynamic Digital Twin”, goes beyond the traditional DT notion where the model and the physical system are viewed side-by-side in a static way, to a paradigm where the model dynamically interacts with the physical system through its instrumentation, (per the DDDAS feed-back control loop between model and instrumentation).