Download Free The Solidification Of Metals Book in PDF and EPUB Free Download. You can read online The Solidification Of Metals and write the review.

Solidification and Crystallization Processing in Metals and Alloys Hasse Fredriksson KTH, Royal Institute of Technology, Stockholm, Sweden Ulla Åkerlind University of Stockholm, Sweden Solidification or crystallization occurs when atoms are transformed from the disordered liquid state to the more ordered solid state, and is fundamental to metals processing. Conceived as a companion volume to the earlier works, Materials Processing during Casting (2006) and Physics of Functional Materials (2008), this book analyzes solidification and crystallization processes in depth. Starting from the thermodynamic point of view, it gives a complete description, taking into account kinetics and mass transfer, down to the final structure. Importantly, the book shows the relationship between the theory and the experimental results. Topics covered include: Fundamentals of thermodynamics Properties of interfaces Nucleation Crystal growth - in vapours, liquids and melts Heat transport during solidification processes Solidification structures - faceted, dendritic, eutectic and peritectic Metallic glasses and amorphous alloy melts Solidification and Crystallization Processing in Metals and Alloys features many solved examples in the text, and exercises (with answers) for students. Intended for Masters and PhD students as well as researchers in Materials Science, Engineering, Chemistry and Metallurgy, it is also a valuable resource for engineers in industry.
The progress of civilization can be, in part, attributed to their ability to employ metallurgy. This book is an introduction to multiple facets of physical metallurgy, materials science, and engineering. As all metals are crystalline in structure, it focuses attention on these structures and how the formation of these crystals are responsible for certain aspects of the material's chemical and physical behaviour. Concepts in Physical Metallurgy also discusses the mechanical properties of metals, the theory of alloys, and physical metallurgy of ferrous and non-ferrous alloys.
This text provides a teachable and readable approach to transport phenomena (momentum, heat, and mass transport) by providing numerous examples and applications, which are particularly important to metallurgical, ceramic, and materials engineers. Because the authors feel that it is important for students and practicing engineers to visualize the physical situations, they have attempted to lead the reader through the development and solution of the relevant differential equations by applying the familiar principles of conservation to numerous situations and by including many worked examples in each chapter. The book is organized in a manner characteristic of other texts in transport phenomena. Section I deals with the properties and mechanics of fluid motion; Section II with thermal properties and heat transfer; and Section III with diffusion and mass transfer. The authors depart from tradition by building on a presumed understanding of the relationships between the structure and properties of matter, particularly in the chapters devoted to the transport properties (viscosity, thermal conductivity, and the diffusion coefficients). In addition, generous portions of the text, numerous examples, and many problems at the ends of the chapters apply transport phenomena to materials processing.
“Principles of Solidification” offers comprehensive descriptions of liquid-to-solid transitions encountered in shaped casting, welding, and non-biological bulk crystal growth processes. The book logically develops through careful presentation of relevant thermodynamic and kinetic theories and models of solidification occurring in a variety of materials. Major topics encompass the liquid-state, liquid-solid transformations, chemical macro- and microsegregation, purification by fractional crystallization and zone refining, solid-liquid interfaces, polyphase freezing, and rapid solidification processing. Solid-liquid interfaces are discussed quantitatively both as sharp and diffuse entities, with supporting differential geometric descriptions. The book offers: • Detailed mathematical examples throughout to guide readers • Applications of solidification and crystal growth methodologies for preparation and purification of metals, ceramics, polymers and semiconductors • Appendices providing supporting information on special topics covered in the chapters. Readers in materials, metallurgical, chemical, and mechanical engineering will find this to be a useful source on the subjects of solidification and crystal growth. Chemists, physicists, and geologists concerned with melting/freezing phenomena will also find much of value in this book.
This work is a classic reference text for metallurgists, material scientists and crystallographers. The first edition was published in 1965. The first part of that edition was revised and re-published in 1975 and again in 1981. The present two-part set represents the eagerly awaited full revision by the author of his seminal work, now published as Parts I and II. Professor Christian was one of the founding fathers of materials science and highly respected worldwide. The new edition of his book deserves a place on the bookshelf of every materials science and engineering department. Suitable thermal and mechanical treatments will produce extensive rearrangements of the atoms in metals and alloys, and corresponding marked variations in physical and chemical properties. This book describes how such changes in the atomic configuration are effected, and discusses the associated kinetic and crystallographic features. It deals with areas such as lattice geometry, point defects, dislocations, stacking faults, grain and interphase boundaries, solid solutions, diffusion, etc. The first part covers the general theory while the second part is concerned with descriptions of specific types of transformations.
Solidification is one of the oldest processes for producing useful implements and remains one of the most important modern commercial processes. This text describes the fundamentals of the technology in a coherent way, using consistent notation.
"Solidification Processing of Metal Matrix Composites" (MMCs) focuses primarily on microcomposites but also covers macrocomposites, nanocomposites and foams. There are four main areas detailed: fundamentals of solidification synthesis, which examines issues related to stir mixing, pressure infiltration, transfer of particles or fibers through gas-liquid and liquid-solid interfaces, and particle/fiber interactions with fluids; processing and microstructures, which focuses on microstructure formation during solidification of MMC under different conditions, such as nucleation, growth, heat transfer, microsegregation, macrosegregation and interactions between solidifying interfaces, particles and fibers; and, properties of solidification processing, covering the relationship between the microstructures and properties. Comparisons are made between properties of solidification processed composites and monolithic and composites made by solid and vapor phase processes. It also details the application of solidification processed MMCs, revealing current and future applications especially in automotive, aerospace, railroad, thermal management, electromechanical machinery and recreational equipment sectors.
Current interest in research of solidification of melts is focussed to understand crystal nucleation and crystal growth. They determine the solidified product with its physical properties. A detailed description of these processes lead to the development and validation of physical models, which may form the basis of quantitative modelling of solidification routes in e.g. casting and foundry processes in order to develop a predictive capability in the design of materials during solidification. This book, based on a symposium held at EUROMAT 2003 aims to gives an overview on current developments in the research of solidification and crystallisation of liquids. The materials of interest range from metals and their alloys over semiconductors and isolators to organic substances.