Download Free The Solar Cooling Design Guide Book in PDF and EPUB Free Download. You can read online The Solar Cooling Design Guide and write the review.

Solar cooling systems can be a cost-effective and environmentally attractive air-conditioning solution. The design of such systems, however, is complex. Research carried out under the aegis of the International Energy Agency's Solar Heating and Cooling Program has shown that there is a range of seemingly subtle design decisions that can impact significantly on the performance of solar cooling systems. In order to reduce the risk of errors in the design process, this guide provides detailed and very specific engineering design information. It focuses on case study examples of installed plants that have been monitored and evaluated over the last decade. For three successful plants the design process is described in detail and the rationale for each key design decision is explained. Numerical constraints are suggested for the sizing / selection parameters of key equipment items. Moreover, the application conditions under which the system selection is appropriate are discussed. By following The Guide for any of the three specific solar cooling systems, the designer can expect to reliably achieve a robust, energy-saving solution. This book is intended as a companion to the IEA Solar Cooling Handbook which provides a general overview of the various technologies as well as comprehensive advice to enable engineers to design their own solar cooling system from first principles.
Cooling buildings is a major global energy consumer and the energy requirement is growing year by year. This guide to solar cooling technology explains all you need to know about how solar energy can be converted into cooling energy. It outlines the difference between heat-driven and photovoltaic-driven systems and gives examples of both, making clear in what situations solar cooling technology makes sense. It includes chapters on: • solar thermal collectors • solar cooling technologies • cold distribution • storage components • designing and sizing • installation, operation and maintenance • economic feasibility • potential markets • case studies. Solar Cooling is for engineers, architects, consultancies, solar thermal technology companies, students and anyone who is interested in getting involved with this technology.
New buildings can be designed to be solar oriented, naturally heated and cooled, naturally lit and ventilated, and made with renewable, sustainable materials—no matter the location or climate. In this comprehensive overview of passive solar design, two of America’s solar pioneers give homeowners, architects, designers, and builders the keys to successfully harnessing the sun and maximizing climate resources for heating, cooling, ventilation, and daylighting. Bainbridge and Haggard draw upon examples from their own experiences, as well as those of others, of more than three decades to offer both overarching principles as well as the details and formulas needed to successfully design a more comfortable, healthy, and secure place in which to live, laugh, dance, and be comfortable. Even if the power goes off. Passive Solar Architecture also discusses “greener” and more-sustainable building materials and how to use them, and explores the historical roots of green design that have made possible buildings that produce more energy and other resources than they use.
Active solar systems for air heating are a straightforward yet effective way of using solar energy for space heating and tempering ventilation air. They offer some unique advantages over solar water systems, can offer improved comfort and fuller use of solar gains than passive solar systems and are a natural fit with mechanically ventilated buildings. They can be economical, with short pay-back periods and can act not only as space heating or ventilation air heating but also for water pre-heating, sunshading, electricity generation (with hybrid photovoltaic systems) and can help induce cooling. This design handbook takes architects and building engineers through the process of designing and selecting an active solar system from the six types presented, optimizing the system using nomograms and curves, and finally dimensioning the components of the system. Tips are offered regarding the construction and how to avoid problems. The book will provide essential design information for all architects, building engineers and other building design professionals and all those concerned to reduce the environmental impact of buildings.
Renewable energies will play a dominant role in the future energy supply. This handbook provides an overview on the various solutions to convert solar heat into useful cooling, reports about experiences made with realized installations and gives support in the design process. Its use will strongly contribute to achieve high quality solar cooling systems which provide significant energy savings and fulfil the user s requirements."
This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. Only active solar systems are described in this manual. Other books are available for passive designs. Liquid and air-heating solar systems for combined space and service water heating or service water heating only are included in this manual. Furthermore, only systems with proven experience are discussed to any extent. This manual was developed by the staff of the Solar Energy Applications Laboratory and vocational education specialists at Colorado State University in cooperation with the NAHB Research Foundation. A national advisory committee selected from various sectors of the home-building industry, university sources, private practice, and government, was established to provide advice and general guidance.