Download Free The Solar Cooling Design Guide Book in PDF and EPUB Free Download. You can read online The Solar Cooling Design Guide and write the review.

Solar cooling systems can be a cost-effective and environmentally attractive air-conditioning solution. The design of such systems, however, is complex. Research carried out under the aegis of the International Energy Agency's Solar Heating and Cooling Program has shown that there is a range of seemingly subtle design decisions that can impact significantly on the performance of solar cooling systems. In order to reduce the risk of errors in the design process, this guide provides detailed and very specific engineering design information. It focuses on case study examples of installed plants that have been monitored and evaluated over the last decade. For three successful plants the design process is described in detail and the rationale for each key design decision is explained. Numerical constraints are suggested for the sizing / selection parameters of key equipment items. Moreover, the application conditions under which the system selection is appropriate are discussed. By following The Guide for any of the three specific solar cooling systems, the designer can expect to reliably achieve a robust, energy-saving solution. This book is intended as a companion to the IEA Solar Cooling Handbook which provides a general overview of the various technologies as well as comprehensive advice to enable engineers to design their own solar cooling system from first principles.
Cooling buildings is a major global energy consumer and the energy requirement is growing year by year. This guide to solar cooling technology explains all you need to know about how solar energy can be converted into cooling energy. It outlines the difference between heat-driven and photovoltaic-driven systems and gives examples of both, making clear in what situations solar cooling technology makes sense. It includes chapters on: • solar thermal collectors • solar cooling technologies • cold distribution • storage components • designing and sizing • installation, operation and maintenance • economic feasibility • potential markets • case studies. Solar Cooling is for engineers, architects, consultancies, solar thermal technology companies, students and anyone who is interested in getting involved with this technology.
New buildings can be designed to be solar oriented, naturally heated and cooled, naturally lit and ventilated, and made with renewable, sustainable materials—no matter the location or climate. In this comprehensive overview of passive solar design, two of America’s solar pioneers give homeowners, architects, designers, and builders the keys to successfully harnessing the sun and maximizing climate resources for heating, cooling, ventilation, and daylighting. Bainbridge and Haggard draw upon examples from their own experiences, as well as those of others, of more than three decades to offer both overarching principles as well as the details and formulas needed to successfully design a more comfortable, healthy, and secure place in which to live, laugh, dance, and be comfortable. Even if the power goes off. Passive Solar Architecture also discusses “greener” and more-sustainable building materials and how to use them, and explores the historical roots of green design that have made possible buildings that produce more energy and other resources than they use.
Solar cooling systems can be a cost-effective and environmentally attractive air-conditioning solution. The design of such systems, however, is complex. Research carried out under the aegis of the International Energy Agency's Solar Heating and Cooling Program has shown that there is a range of seemingly subtle design decisions that can impact significantly on the performance of solar cooling systems. In order to reduce the risk of errors in the design process, this guide provides detailed and very specific engineering design information. It focuses on case study examples of installed plants that have been monitored and evaluated over the last decade. For three successful plants the design process is described in detail and the rationale for each key design decision is explained. Numerical constraints are suggested for the sizing / selection parameters of key equipment items. Moreover, the application conditions under which the system selection is appropriate are discussed. By following The Guide for any of the three specific solar cooling systems, the designer can expect to reliably achieve a robust, energy-saving solution. This book is intended as a companion to the IEA Solar Cooling Handbook which provides a general overview of the various technologies as well as comprehensive advice to enable engineers to design their own solar cooling system from first principles.
In vielen Ländern trägt die sommerliche Raumklimatisierung maßgeblich zum Energieverbrauch von Gebäuden bei. Eine vielversprechende Möglichkeit zur Reduktion ist die Nutzung von thermischer Solarenergie in Systemen der solar unterstützten Klimatisierung. Der große Vorteil liegt dabei in der weitgehenden Zeitgleichheit von Kühllasten und Solargewinnen, zumindest im saisonalen Maßstab. Allerdings wurden bis heute weltweit nur vergleichsweise wenige Systeme installiert, und es liegen nur geringe Erfahrungen hinsichtlich Auslegung und Betrieb solcher Anlagen vor. Das Ziel dieser mittlerweile in der 3. Auflage vorliegenden Handbuchs ist es, zur Beseitigung dieses Mangels beizutragen und den Planer bei der Auslegung von Anlagen der solar unterstützten Klimatisierung, die thermische Solarkollektoren als Wärmequelle nutzen, zu unterstützen.
In hot dry or warm humid climates, more than half of the urban peak load of energy consumption is used to satisfy air-conditioning demands alone. Since the urbanization rate in developing countries is extreme, the pressure placed on energy resources to satisfy the future requirements of the built environment will be great, unless new, more cost-effective measures can be introduced. Stay Cool is an essential guide for planning and design using active design principles and passive means to satisfy human comfort requirements specifically in these climate zones, based on examples of traditional and modern constructions. The book demonstrates how a design strategy for urban environments and individual buildings, incorporating naturally occurring resources and specific energy-efficient technologies, can create a location, form and structure that promote significant energy-savings. Such strategies can be applied to low cost housing, or indeed to any other buildings, in order to improve comfort with passive means and low energy budgets. Following an outline of climatic issues, characteristics and thermal comfort requirements, the book details the available techniques and technologies that can be used to shape both built and external environments, the building envelope, material selections and natural ventilation and cooling methods to satisfy both human requirements and the need for energy efficiency. It also includes an active design checklist and summary of available design checking tools, a rehabilitation guide for existing urban, building and external environments, and solar charts. Planners, architects, engineers, technicians and building designers will find Stay Cool an inspirational guide and an essential reference when working with planning and design of the built environment in hot dry and warm humid climate zones. It will also be of benefit to students, academics and researchers with an interest in sustainable and energy-efficient architecture techniques and practice.
Bad experiences with construction quality, the energy crises of 1973 and 1979, complaints about "sick buildings", thermal, acoustical, visual and olfactory discomfort, the need for good air quality, the move towards energy efficiency, decarbonization and sustainability ? all these have accelerated the development of a discipline that, for a long time, was hardly more than an academic exercise: building physics. The discipline embraces domains such as heat and mass transfer, building acoustics, lighting, indoor environmental quality, energy efficiency, and, in some countries, fire safety. Through the application of physical knowledge and its combination with information coming from other disciplines, building physics helps to under-stand the physical phenomena governing building parts, building envelope, whole building and built environment performance ? called urban physics. Today, building physics has be-come a key player on the road to highly performing new buildings and renovations. This book deals with heat, air and moisture transport in building parts or assemblies and whole buildings with emphasis on the building engineering applications. Compared to the third edition, this fourth edition has been expanded in chapter 1 to include the physical determination of the thermal conductivity of materials, together with an in-depth discussion of all the effects of thicker insulation layers. In chapter 2, additional information has been added on wind pressure and the evaluation of condensation inside the building com-ponents, while a new chapter 4 on material properties has been included. The whole book, including the figures, has been revised and restructured where necessary.
The essential guide to environmental control systems in building design For over 25 years Heating, Cooling, Lighting: Sustainable Design Strategies Towards Net Zero Architecture has provided architects and design professionals the knowledge and tools required to design a sustainable built environment at the schematic design stage. This Fifth Edition offers cutting-edge research in the field of sustainable architecture and design and has been completely restructured based on net zero design strategies. Reflecting the latest developments in codes, standards, and rating systems for energy efficiency, Heating, Cooling, Lighting: Sustainable Design Strategies Towards Net Zero Architecture includes three new chapters: Retrofits: Best practices for efficient energy optimization in existing buildings Integrated Design: Strategies for synergizing passive and active design Design Tools: How to utilize the best tools to benchmark a building's sustainability and net zero potential Heating, Cooling, Lighting: Sustainable Design Strategies Towards Net Zero Architecture is a go-to resource for practicing professionals and students in the fields of environmental systems technology or design, environmental design systems, construction technology, and sustainability technology.
Solar thermal systems available today offer efficiency and reliability. They can be applied in different conditions to meet space- and water-heating requirements in the residential, commercial and industrial building sectors. The potential for this technology and the associated environmental benefits are significant. This book offers clear guidance on planning and installing a solar thermal system, crucial to the successful uptake of this technology. All major topics for successful project implementation are included. Beginning with resource assessment and an outline of core components, this guide details solar thermal system design, installation, operation and maintenance for single households, large systems, swimming pool heaters, solar air and solar cooling applications. Details on how to market solar thermal technologies, a review of relevant simulation tools and data on selected regional, national and international renewable energy programmes are also provided. In short, the book offers comprehensive guidance for professionals who wish to install solar thermal technology and will be a cherished resource for architects and engineers alike who are working on new projects, electricians, roofers and other installers, craftsmen undertaking vocational training and anyone with a specialized and practical interest in this field. Published with DGS