Download Free The Shanghai Maths Project Year 2 Book in PDF and EPUB Free Download. You can read online The Shanghai Maths Project Year 2 and write the review.

​This book is about how teachers can use classroom mathematics tasks to support student learning, and presents data on the ways in which teachers used those tasks in a particular research project. It is the product of research findings focusing on teacher practice, teacher learning and knowledge, and student learning. It demonstrates how teachers can use mathematics tasks to promote effective student learning.​
Teaching Mathematics is nothing less than a mathematical manifesto. Arising in response to a limited National Curriculum, and engaged with secondary schooling for those aged 11 ̶ 14 (Key Stage 3) in particular, this handbook for teachers will help them broaden and enrich their students’ mathematical education. It avoids specifying how to teach, and focuses instead on the central principles and concepts that need to be borne in mind by all teachers and textbook authors—but which are little appreciated in the UK at present.This study is aimed at anyone who would like to think more deeply about the discipline of ‘elementary mathematics’, in England and Wales and anywhere else. By analysing and supplementing the current curriculum, Teaching Mathematics provides food for thought for all those involved in school mathematics, whether as aspiring teachers or as experienced professionals. It challenges us all to reflect upon what it is that makes secondary school mathematics educationally, culturally, and socially important.
The Shanghai Maths Project Year 2 Learning is a pupil textbook containing the Year 2 maths facts and full pictorial glossary to enable children to master the Year 2 maths programme of study for England. It sits alongside the Practice Books and the Teacher's Guide to complete the Shanghai Maths programme for Year 2. The Shanghai Maths Project Year 2 Learning is a pupil textbook containing: - Maths facts for each topic with colourful models and images- Full Year 2 pictorial glossary of mathematical termsIt sits alongside the Practice Books and the Teacher's Guide to complete the Shanghai Maths programme for Year 2.
This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.
The book has been written by an international group of very activeresearchers and scholars who have a passion for the study of Chinesemathematics education. It aims to provide readers with a comprehensiveand updated picture of the teaching and learning of mathematicsinvolving Chinese students from various perspectives, including theways in which Chinese students learn mathematics in classrooms, schools and homes, the influence of the cultural and socialenvironment on Chinese students'' mathematics learning, and thestrengths and weaknesses of the ways in which Chinese learnmathematics
This book focuses on issues related to mathematics teaching and learning resources, including mathematics textbooks, teacher guides, student learning and assessment materials, and online resources. The book highlights various theoretical and methodological approaches used to study teaching and learning resources, and addresses the areas of resources, teachers, and students at an international level. As for the resources, the book examines the role textbooks and other curricular or learning resources play in mathematics teaching, learning, and assessment. It asks questions such as: Could we consider different types of textbooks and roles they play in teaching and learning? How does the digitalization of information and communication affect these roles? What are defining features of e-textbooks, and how could we characterize the differences between the traditional textbooks and e-textbooks? As for the teachers, the book discusses the relationships between teachers’ individual and collective resources, and the way in which we could model such relationships. Specific questions addressed are: What is the role of teachers in developing textbooks and other teaching and learning materials? What are the relationships between resource designers and users? What are the consequences of these changing roles and relationships for the teaching of mathematics, and for teacher knowledge and professional development? As for the students, the book explores how students, as well as their teachers, interact through resources. It raises and addresses questions such as: What are the effects of modern ICT (particularly internet) on students’ use and the design of resources? How do changing patterns of use and design affect student behaviour, learning, and relationships to the subject of mathematics?
The wide availability of digital educational resources for mathematics teaching and learning is indisputable, with some notable genres of technologies having evolved, such as graphing calculators, dynamic graphing, dynamic geometry and data visualization tools. But what does this mean for teachers of mathematics, and how do their roles evolve within this digital landscape? This essential book offers an international perspective to help bridge theory and practice, including coverage of networking theories, curriculum design, task implementation, online resources and assessment. Mathematics Education in the Digital Age details the impacts this digital age has, and will continue to have, on the parallel aspects of learning and teaching mathematics within formal education systems and settings. Written by a group of international authors, the chapters address the following themes: Mathematics teacher education and professional development Mathematics curriculum development and task design The assessment of mathematics Theoretical perspectives and methodologies/approaches for researching mathematics education in the digital age This book highlights not only the complex nature of the field, but also the advancements in theoretical and practical knowledge that is enabling the mathematics education community to continue to learn in this increasingly digital age. It is an essential read for all mathematics teacher educators and master teachers.
This open access book presents a comparative study on how large-scale professional development programs for teachers are designed and implemented. Around the world, governments and educators are recognizing the need to educate students in a broad range of higher order cognitive skills and socio-emotional competencies, and providing effective opportunities for teachers to develop the expertise needed to teach these skills is a crucial aspect of effective implementation of curricula which include those goals. This study examines how large-scale efforts to empower teachers for deeper instruction have been designed, how they have been implemented, and their outcomes. To do so, it investigates six programs from England, Colombia, Mexico, India, and the United States. Though all six are intended to broaden and deepen students’ curricular aspirations, each takes this expansion of curricular goals in a different direction. The ambitious education reforms studied here explicitly focus on building teachers’ capacity to teach on a broader set of goals. Through a discerning analysis of program documents, evaluations, and interviews with senior leaders and participants in the programs, the book identifies the various theories of action used in these programs, examines how they were implemented, and discusses what they achieved. As such, it offers an indispensable resource for education leaders interested in designing and implementing professional development programs for teachers that are aligned with ambitious instructional goals.
This text offers guidance to teachers, mathematics coaches, administrators, parents, and policymakers. This book: provides a research-based description of eight essential mathematics teaching practices ; describes the conditions, structures, and policies that must support the teaching practices ; builds on NCTM's Principles and Standards for School Mathematics and supports implementation of the Common Core State Standards for Mathematics to attain much higher levels of mathematics achievement for all students ; identifies obstacles, unproductive and productive beliefs, and key actions that must be understood, acknowledged, and addressed by all stakeholders ; encourages teachers of mathematics to engage students in mathematical thinking, reasoning, and sense making to significantly strengthen teaching and learning.