Download Free The Settlement Behavior Of Single Axially Loaded Incompressible Piles And Piers Book in PDF and EPUB Free Download. You can read online The Settlement Behavior Of Single Axially Loaded Incompressible Piles And Piers and write the review.

Guiding the professional through the complexities of lateral-load design, this book and CD-ROM combination introduces the procedures involved in piles and pile group design. This is a problem that can only be solved by accounting for the soil resistance as related to the lateral deflection of the pile. Intricate equations are derived and fully explained, enabling the designer to find the critical loads, that will either cause a pile to be overloaded or cause too much lateral deflection. The CD-ROM contains simplified versions of two required programs that allow the reader to check the solutions of some of the examples given in the book and to find answers to related problems.
More than ten years have passed since the first edition was published. During that period there have been a substantial number of changes in geotechnical engineering, especially in the applications of foundation engineering. As the world population increases, more land is needed and many soil deposits previously deemed unsuitable for residential housing or other construction projects are now being used. Such areas include problematic soil regions, mining subsidence areas, and sanitary landfills. To overcome the problems associated with these natural or man-made soil deposits, new and improved methods of analysis, design, and implementation are needed in foundation construction. As society develops and living standards rise, tall buildings, transportation facilities, and industrial complexes are increasingly being built. Because of the heavy design loads and the complicated environments, the traditional design concepts, construction materials, methods, and equipment also need improvement. Further, recent energy and material shortages have caused additional burdens on the engineering profession and brought about the need to seek alternative or cost-saving methods for foundation design and construction.
One-of-a-kind coverage on the fundamentals of foundation analysis and design Analysis and Design of Shallow and Deep Foundations is a significant new resource to the engineering principles used in the analysis and design of both shallow and deep, load-bearing foundations for a variety of building and structural types. Its unique presentation focuses on new developments in computer-aided analysis and soil-structure interaction, including foundations as deformable bodies. Written by the world's leading foundation engineers, Analysis and Design of Shallow and Deep Foundations covers everything from soil investigations and loading analysis to major types of foundations and construction methods. It also features: * Coverage on computer-assisted analytical methods, balanced with standard methods such as site visits and the role of engineering geology * Methods for computing the capacity and settlement of both shallow and deep foundations * Field-testing methods and sample case studies, including projects where foundations have failed, supported with analyses of the failure * CD-ROM containing demonstration versions of analytical geotechnical software from Ensoft, Inc. tailored for use by students in the classroom
This book contains the keynote presentations, invited speeches, and general session papers presented at the 2nd International Symposium on Asia Urban GeoEngineering, which will be held from 24 November to 27 November 2017 in Changsha, China. The contents will cover the topics of (i) Fundamental behavior and constitutive model of geomaterials, (ii) Excavation and slope engineering, (iii) Tunnel and underground engineering, (iv) Foundation and foundation treatment, (v) Environmental geotechnical engineering, (vi) Numerical methods in geotechnical engineering. It will provide an opportunity to share knowledge and experiences of the analysis, design, construction, and maintenance of urban geoengineering among engineers, researchers, and professors in Asian countries. It will improve our knowledge of requirements of geoengineering for a long-term sustainable urban development and the need to protect and preserve our environment.
The work of geotechnical engineers contributes to the creation of safe, economic and pleasant spaces to live, work and relax all over the world. Advances are constantly being made, and the expertise of the profession becomes ever more important with the increased pressure on space and resources. This book presents the proceedings of the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (XV PCSMGE), held in Buenos Aires, Argentina, in November 2015. This conference, held every four years, is an important opportunity for international experts, researchers, academics, professionals and geo-engineering companies to meet and exchange ideas and research findings in the areas of soil mechanics, rock mechanics, and their applications in civil, mining and environmental engineering. The articles are divided into nine sections: transportation geotechnics; in-situ testing; geo-engineering for energy and sustainability; numerical modeling in geotechnics; foundations and ground improvement; unsaturated soil behavior; embankments, dams and tailings; excavations and tunnels; and geo-risks, and cover a wide spectrum of issues from fundamentals to applications in geotechnics. This book will undoubtedly represent an essential reference for academics, researchers and practitioners in the field of soil mechanics and geotechnical engineering. In this proceedings, approximately 65% of the contributions are in English, and 35% of the contributions are in Spanish or Portuguese.
Methods of Foundation Engineering covers the theory, analysis, and practice of foundation engineering, as well as its soil mechanics and structural design aspects and principles. The book is divided into five parts encompassing 21 chapters. Part A is of an introductory character and presents a brief review of the various types of foundation structures used in civil engineering and their historical development. Part B provides the theoretical fundamentals of soil and rock mechanics, which are of importance for foundation design. Part C deals with the design of the footing area of spread footings and discusses the shallow foundation methods. Part D describes the methods of deep foundations, while Part E is devoted to special foundation methods. Each chapter in Parts C to E starts with an introduction containing a synopsis of the matter being discussed and giving suggestions as to the choice of a suitable method of foundation. This is followed by a description of the methods generally used in practice. Simple analyses of structures, presented at the conclusion of each chapter, can be carried out by a pocket calculator. This book will prove useful to practicing civil and design engineers.
Model Uncertainties in Foundation Design is unique in the compilation of the largest and the most diverse load test databases to date, covering many foundation types (shallow foundations, spudcans, driven piles, drilled shafts, rock sockets and helical piles) and a wide range of ground conditions (soil to soft rock). All databases with names prefixed by NUS are available upon request. This book presents a comprehensive evaluation of the model factor mean (bias) and coefficient of variation (COV) for ultimate and serviceability limit state based on these databases. These statistics can be used directly for AASHTO LRFD calibration. Besides load test databases, performance databases for other geo-structures and their model factor statistics are provided. Based on this extensive literature survey, a practical three-tier scheme for classifying the model uncertainty of geo-structures according to the model factor mean and COV is proposed. This empirically grounded scheme can underpin the calibration of resistance factors as a function of the degree of understanding – a concept already adopted in the Canadian Highway Bridge Design Code and being considered for the new draft for Eurocode 7 Part 1 (EN 1997-1:202x). The helical pile research in Chapter 7 was recognised by the 2020 ASCE Norman Medal.