Download Free The Sensitivity Analysis In K Epsilon Turbulence Modeling Applied To Jet Flows Book in PDF and EPUB Free Download. You can read online The Sensitivity Analysis In K Epsilon Turbulence Modeling Applied To Jet Flows and write the review.

Aimed at applied mathematicians interested in the numerical simulation of turbulent flows. Centered around the k-&epsis; model, it also deals with other models such as one equation models, subgrid scale models and Reynolds Stress models. Presents the k-&epsis; method for turbulence in a language familiar to applied mathematicians, but has none of the technicalities of turbulence theory.
An extended kappa-epsilon turbulence model is proposed and tested with successful results. An improved transport equation for the rate of dissipation of the turbulent kinetic energy, epsilon, is proposed. The proposed model gives more effective response to the energy production rate than does the standard kappa-epsilon turbulence model. An extra time scale of the production range is included in the dissipation rate equation. This enables the present model to perform equally well for several turbulent flows with different characteristics, e.g., plane and axisymmetric jets, turbulent boundary layer flow, turbulent flow over a backward-facing step, and a confined turbulent swirling flow. A second-order accurate finite difference boundary layer code and a nearly second-order accurate finite difference elliptic flow solver are used for the present numerical computations. Chen, Y.-S. and Kim, S.-W. Unspecified Center NASA-CR-179204, NAS 1.26:179204 NAS8-35918
An improved k-epsilon model for low Reynolds number turbulence near a wall is presented. The near-wall asymptotic behavior of the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation is analyzed. Based on this analysis, a modified eddy viscosity model, having correct near-wall behavior, is suggested, and a model for the pressure transport term in the k-equation is proposed. In addition, a modeled dissipation rate equation is reformulated. Fully developed channel flows were used for model testing. The calculations using various k-epsilon models are compared with direct numerical simulations. The results show that the present k-epsilon model performs well in predicting the behavior of near-wall turbulence. Significant improvement over previous k-epsilon models is obtained. Shih, T. H. Glenn Research Center NASA-TM-103221, ICOMP-90-16, E-5635, NAS 1.15:103221 NASA ORDER C-99066-G; RTOP 505-62-21...
A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data. Yang, Z. and Shih, T. H. Glenn Research Center NASA ORDER C-99066-6; RTOP 505-62-21...