Download Free The Scientific Context For Exploration Of The Moon Book in PDF and EPUB Free Download. You can read online The Scientific Context For Exploration Of The Moon and write the review.

Because of the Moon's unique place in the evolution of rocky worlds, it is a prime focus of NASA's space exploration vision. Currently NASA is defining and implementing a series of robotic orbital and landed missions to the Moon as the initial phase of this vision. To realize the benefits of this activity, NASA needs a comprehensive, well-validated, and prioritized set of scientific research objectives. To help establish those objectives, NASA asked the NRC to provide guidance on the scientific challenges and opportunities enabled by sustained robotic and human exploration of the Moon during the period 2008-2023 and beyond. This final report presents a review of the current understanding of the early earth and moon; the identification of key science concepts and goals for moon exploration; an assessment of implementation options; and a set of prioritized lunar science concepts, goals, and recommendations. An interim report was released in September 2006.
Because of the Moon's unique place in the evolution of rocky worlds, it is a prime focus of NASA's space exploration vision. Currently NASA is defining and implementing a series of robotic orbital and landed missions to the Moon as the initial phase of this vision. To realize the benefits of this activity, NASA needs a comprehensive, well-validated, and prioritized set of scientific research objectives. To help establish those objectives, NASA asked the NRC to provide guidance on the scientific challenges and opportunities enabled by sustained robotic and human exploration of the Moon during the period 2008-2023 and beyond. This final report presents a review of the current understanding of the early earth and moon; the identification of key science concepts and goals for moon exploration; an assessment of implementation options; and a set of prioritized lunar science concepts, goals, and recommendations. An interim report was released in September 2006.
Because of the Moon's unique place in the evolution of rocky worlds, it is a prime focus of NASA's space exploration vision. Currently NASA is defining and implementing a series of robotic orbital and landed missions to the Moon as the initial phase of this vision. To realize the benefits of this activity, NASA needs a comprehensive, well-validated, and prioritized set of scientific research objectives. To help establish those objective, NASA asked the NRC to provide guidance on the scientific challenges and opportunities enabled by sustained robotic and human exploration of the Moon during the period 2008-2013+. This interim report, which focuses on science of the Moon, presents a number of scientific themes describing broad scientific goals important for lunar research, discussions of how best to reach these goals, a set of three priority areas that follow from the themes, and recommendations for these priorities and related areas. A final report will follow in the summer of 2007.
Former NASA Astronaut Harrison Schmitt advocates a private, investor-based approach to returning humans to the Moon—to extract Helium 3 for energy production, to use the Moon as a platform for science and manufacturing, and to establish permanent human colonies there in a kind of stepping stone community on the way to deeper space. With governments playing a supporting role—just as they have in the development of modern commercial aeronautics and agricultural production—Schmitt believes that a fundamentally private enterprise is the only type of organization capable of sustaining such an effort and, eventually, even making it pay off.
Winner of the Eugene M. Emme Astronautical Literature Award A Bloomberg View Must-Read Book of the Year A Choice Outstanding Academic Title of the Year “A substance-rich, original on every page exploration of how the space program interacted with the environmental movement, and also with the peace and ‘Whole Earth’ movements of the 1960s.” —Tyler Cowen, Marginal Revolution The summer of 1969 saw astronauts land on the moon for the first time and hippie hordes descend on Woodstock. This lively and original account of the space race makes the case that the conjunction of these two era-defining events was not entirely coincidental. With its lavishly funded mandate to put a man on the moon, the Apollo mission promised to reinvigorate a country that had lost its way. But a new breed of activists denounced it as a colossal waste of resources needed to solve pressing problems at home. Neil Maher reveals that there were actually unexpected synergies between the space program and the budding environmental, feminist and civil rights movements as photos from space galvanized environmentalists, women challenged the astronauts’ boys club and NASA’s engineers helped tackle inner city housing problems. Against a backdrop of Saturn V moonshots and Neil Armstrong’s giant leap for mankind, Apollo in the Age of Aquarius brings the cultural politics of the space race back down to planet Earth. “As a child in the 1960s, I was aware of both NASA’s achievements and social unrest, but unaware of the clashes between those two historical currents. Maher [captures] the maelstrom of the 1960s and 1970s as it collided with NASA’s program for human spaceflight.” —George Zamka, Colonel USMC (Ret.) and former NASA astronaut “NASA and Woodstock may now seem polarized, but this illuminating, original chronicle...traces multiple crosscurrents between them.” —Nature
During 1988, the National Research Council's Space Science Board reorganized itself to more effectively address NASA's advisory needs. The Board's scope was broadened: it was renamed the Space Studies Board and, among other new initiatives, the Committee on Human Exploration was created. The new committee was intended to focus on the scientific aspects of human exploration programs, rather than engineering issues. Their research led to three reports: Scientific Prerequisites for the Human Exploration of Space published in 1993, Scientific Opportunities in the Human Exploration of Space published in 1994, and Science Management in the Human Exploration of Space published in 1997. These three reports are collected and reprinted in this volume in their entirety as originally published.
More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.
Stung by the pioneering space successes of the Soviet Union - in particular, Gagarin being the first man in space, the United States gathered the best of its engineers and set itself the goal of reaching the Moon within a decade. In an expanding 2nd edition of How Apollo Flew to the Moon, David Woods tells the exciting story of how the resulting Apollo flights were conducted by following a virtual flight to the Moon and its exploration of the surface. From launch to splashdown, he hitches a ride in the incredible spaceships that took men to another world, exploring each step of the journey and detailing the enormous range of disciplines, techniques, and procedures the Apollo crews had to master. While describing the tremendous technological accomplishment involved, he adds the human dimension by calling on the testimony of the people who were there at the time. He provides a wealth of fascinating and accessible material: the role of the powerful Saturn V, the reasoning behind trajectories, the day-to-day concerns of human and spacecraft health between two worlds, the exploration of the lunar surface and the sheer daring involved in traveling to the Moon and the mid-twentieth century. Given the tremendous success of the original edition of How Apollo Flew to the Moon, the second edition will have a new chapter on surface activities, inspired by reader's comment on Amazon.com. There will also be additional detail in the existing chapters to incorporate all the feedback from the original edition, and will include larger illustrations.
The only work to date to collect data gathered during the American and Soviet missions in an accessible and complete reference of current scientific and technical information about the Moon.
Volume 60 of Reviews in Mineralogy and Geochemistry assesses the current state of knowledge of lunar geoscience, given the data sets provided by missions of the 1990's, and lists remaining key questions as well as new ones for future exploration to address. It documents how a planet or moon other than the world on which we live can be studied and understood in light of integrated suites of specific kinds of information. The Moon is the only body other than Earth for which we have material samples of known geologic context for study. This volume seeks to show how the different kinds of information gained about the Moon relate to each other and also to learn from this experience, thus allowing more efficient planning for the exploration of other worlds.