Download Free The Science Of Photobiology Book in PDF and EPUB Free Download. You can read online The Science Of Photobiology and write the review.

Photobiology - the science of light and life - begins with basic principles and the physics of light and continues with general photobiological research methods, such as generation of light, measurement of light, and action spectroscopy. In an interdisciplinary way, it then treats how organisms tune their pigments and structures to the wavelength components of light, and how light is registered by organisms. Then follow various examples of photobiological phenomena: the design of the compound eye in relation to the properties of light, phototoxicity, photobiology of the human skin and of vitamin D, photomorphogenesis, photoperiodism, the setting of the biological clock by light, and bioluminescence. A final chapter is devoted to teaching experiments and demonstrations in photobiology. This book encompasses topics from a diverse array of traditional disciplines: physics, biochemistry, medicine, zoology, botany, microbiology, etc., and makes different aspects of photobiology accessible to experts in all these areas as well as to the novice.
The first edition of The Science of Photobiology was published in 1977, and was the first textbook to cover all of the major areas of photobiology. The science of photobiology is currently divided into 14 subspecialty areas by the American Society for Photobiology. In this edition, however, the topics of phototechnology and spectroscopy have been com bined in a new chapter entitled "Photophysics." The other subspecialty areas remain the same, i.e., Photochemistry, Photosensitization, UV Radiation Effects, Environmental Photobiology, Photomedicine, Circadian Rhythms, Extraretinal Photoreception, Vision, Photomorphogenesis, Photomovement, Photosynthesis, and Bioluminescence. This book has been written as a textbook to introduce the science of photobiology to advanced undergraduate and graduate students. The chapters are written to provide a broad overview of each topic. They are designed to contain the amount of information that might be presented in a one-to two-hour general lecture. The references are not meant to be exhaustive, but key references are included to give students an entry into the literature. Frequently a more recent reference that reviews the literature will be cited rather than the first paper by the author making the original discovery. The chapters are not meant to be a repository of facts for research workers in the field, but rather are concerned with demon strating the importance of each specialty area of photobiology, and documenting its relevance to current and/or future problems of man.
Although there are several excellent books covering a few of the specialized areas of photobiology, at the present time there is no book that covers all areas of the science of photobiology. This book attempts to fill this void. The science of photobiology is currently divided into 14 subspecialty areas by the American Society for Photobiology. The first 14 chapters of this book deal with those subspecialty areas, each written by a leader in the field. Chapter 15, entitled "New Topics in Photobiology," highlights areas of research that may be desig nated sUbspecialties of photobiology in the future. This book has been written as a textbook to introduce the science of photobiology to advanced undergraduate and graduate students. The chapters are written to provide a broad overview of each topic. They are designed to contain the amount of information that might be presented in a one-to two-hour general lecture. The references are not meant to be exhaustive, but key refer ences are included to give students an entry into the literature. Frequently a more recent reference that reviews the literature will be cited rather than the first paper by the author making the original discovery. Whenever practical, a classroom demonstration or simple laboratory exercise has been provided to exemplify one or more major points in a chapter.
Flavins and flavoproteins are a widely investigated and highly versatile group of compounds. Participation of these compounds in photochemistry and photobiology processes are of particular importance in the fields of biology, chemistry and medicine. Written by leading experts in the field each section of the book includes a historical overview of the subject, state of the art developments and future perspectives. Flavins: Photochemistry and Photobiology begins with the properties and applications of flavins, including their photochemistry in aqueous and organic solutions. Subsequent sections discuss riboflavin as a visible light sensitizer in the photo degradation of drugs, antiviral and antibacterial effects, the role of flavins in light induced toxicity and blue light initiated DNA repair by photolyase. Finally there are sections on the flavin based photoreceptors in plants, bacteria and eukaryotic photosynthetic flagelettes. This book brings together leading experts with a unique interdisciplinary emphasis, to provide an authoritative resource on flavins and their role in photochemistry and photobiology.
Molecular Photobiology: Inactivation and Recovery describes the deleterious photochemical reactions occurring in biological systems. This book is composed of 10 chapters that specifically tackle light interactions in the ultraviolet region of the spectrum resulting to damaged proteins and nucleic acids in living systems. This book deals first with the kinds of photochemical reactions that can occur and the possible effects of photochemistry on molecular, cellular, and organismal levels. The succeeding chapters highlight the principle of recovery mechanisms, wherein evidence shows that cells can repair their damaged genetic material, and thus recover from the otherwise inactivating effects of light. The remaining chapters are devoted to the comparison and contrast of some biological effects of ionizing radiation and those of ultraviolet radiation. This book is of value to molecular photobiologists, photochemists, biochemists, and radiation scientists and researchers.
Photobiology integrates a wide variety of scientific disciplines. As more people become aware of the many ways light interacts with chemical and biological systems, the need for a concise treatment of photobiology has become more critical. Kohen et al. Have written just such a book, intended both as a textbook and as a reference. The authors begin by providing a brief description of the nature of light, how it affects matter, and the means and methods of measuring it. A major section of the book is devoted to how light influences living systems, including discussions of photosynthesis, bioluminescence, regulatory mechanisms, and visual transduction of light. The last half of the book is devoted to the biomedical aspects of light, including photoimmunology, photoallergic reactions and other forms of light sensitivity, the optical properties of skin, and various ways that light can be used in therapy treatments. Useful to photobiologists as a comprehensive overview, this book should also appeal to biomedical researchers and advanced students of photobiology.
It is not always the case that the subject of a scientific book and its relevance to everyday li fe are so timely. Photobiology and its si ster subject Radiobiology are now a must for understanding the environment we live in and the impact light, ultraviolet light, and radiation have on all aspects of our life. Photobiology is a true interdisciplinary field. Photobiology research plays a direct role in diverse fields, and a glance at the topics of the symposia covered in this book by over 100 articles shows the breadth and depth of knowledge acquired in fundamental research and its impact on the major issues and applied problems the world is facing. Half a century of photobiology research brought about an understanding of the importance of light to life, both as a necessary source of energy and growth as weIl as its possible dangers. Research in photochemistry and photobiology led to the discoveries of ceIlular repair mechanisms of UV induced damages to DNA and this led to understanding of the effects of hazardous environmental chemieals and mutagenecity , and to the development of genetic engineering. This topic was given due emphasis in several symposia and chapters in this book.
The Photobiology of Higher Plants offers a comprehensive, balanced coverage of both photosynthesis (including physiology and global aspects) and photomorphogenesis in plants. An accessible, student-friendly approach to the subject is taken, providing the reader with a useful historical perspective and showing how this fascinating subject has evolved. All aspects of plant biochemistry and plant physiology are included with the fundamentals of the subject rigorously covered. Each chapter includes numerous references to provide a useful starting point for those wishing to learn more about the subject. * Provides combined coverage of both photosynthesis and photomorphogenesis in plants. * Includes an extensice glossary designed to provide easy access to key * Aimed at students in Botany, Plant Science, Agriculture and Forestry * A useful reference for postgraduates and researchers working in the field