Download Free The Science Of Conjecture Book in PDF and EPUB Free Download. You can read online The Science Of Conjecture and write the review.

"A magisterial acount of matters as diverse as the Talmud, Justinian's Digest, torture, witch hunts, Tudor treason trials, ancient and medieval astronomy and physics, humanist historiography, scholastic philosophy, speculations in public debt, and 17th century mathematics." -- International Journal of Evidence and Proof
Conjectures and Refutations is one of Karl Popper's most wide-ranging and popular works, notable not only for its acute insight into the way scientific knowledge grows, but also for applying those insights to politics and to history. It provides one of the clearest and most accessible statements of the fundamental idea that guided his work: not only our knowledge, but our aims and our standards, grow through an unending process of trial and error.
Uncle Petros is a family joke. An ageing recluse, he lives alone in a suburb of Athens, playing chess and tending to his garden. If you didn't know better, you'd surely think he was one of life's failures. But his young nephew suspects otherwise. For Uncle Petros, he discovers, was once a celebrated mathematician, brilliant and foolhardy enough to stake everything on solving a problem that had defied all attempts at proof for nearly three centuries - Goldbach's Conjecture. His quest brings him into contact with some of the century's greatest mathematicians, including the Indian prodigy Ramanujan and the young Alan Turing. But his struggle is lonely and single-minded, and by the end it has apparently destroyed his life. Until that is a final encounter with his nephew opens up to Petros, once more, the deep mysterious beauty of mathematics. Uncle Petros and Goldbach's Conjecture is an inspiring novel of intellectual adventure, proud genius, the exhilaration of pure mathematics - and the rivalry and antagonism which torment those who pursue impossible goals.
In The Art of Causal Conjecture, Glenn Shafer lays out a new mathematical and philosophical foundation for probability and uses it to explain concepts of causality used in statistics, artificial intelligence, and philosophy. The various disciplines that use causal reasoning differ in the relative weight they put on security and precision of knowledge as opposed to timeliness of action. The natural and social sciences seek high levels of certainty in the identification of causes and high levels of precision in the measurement of their effects. The practical sciences -- medicine, business, engineering, and artificial intelligence -- must act on causal conjectures based on more limited knowledge. Shafer's understanding of causality contributes to both of these uses of causal reasoning. His language for causal explanation can guide statistical investigation in the natural and social sciences, and it can also be used to formulate assumptions of causal uniformity needed for decision making in the practical sciences. Causal ideas permeate the use of probability and statistics in all branches of industry, commerce, government, and science. The Art of Causal Conjecture shows that causal ideas can be equally important in theory. It does not challenge the maxim that causation cannot be proven from statistics alone, but by bringing causal ideas into the foundations of probability, it allows causal conjectures to be more clearly quantified, debated, and confronted by statistical evidence.
Henri Poincaré was one of the greatest mathematicians of the late nineteenth and early twentieth century. He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincaré conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point. Poincaré's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award. In telling the vibrant story of The Poincaré Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.
A New York Times Editors' Pick and Paris Review Staff Pick "A wonderful book." --Patti Smith "I was riveted. Olsson is evocative on curiosity as an appetite of the mind, on the pleasure of glutting oneself on knowledge." --Parul Sehgal, The New York Times An eloquent blend of memoir and biography exploring the Weil siblings, math, and creative inspiration Karen Olsson’s stirring and unusual third book, The Weil Conjectures, tells the story of the brilliant Weil siblings—Simone, a philosopher, mystic, and social activist, and André, an influential mathematician—while also recalling the years Olsson spent studying math. As she delves into the lives of these two singular French thinkers, she grapples with their intellectual obsessions and rekindles one of her own. For Olsson, as a math major in college and a writer now, it’s the odd detours that lead to discovery, to moments of insight. Thus The Weil Conjectures—an elegant blend of biography and memoir and a meditation on the creative life. Personal, revealing, and approachable, The Weil Conjectures eloquently explores math as it relates to intellectual history, and shows how sometimes the most inexplicable pursuits turn out to be the most rewarding.
In 1920, Perre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This book provides a rigorous proof of the Real Fatou Conjecture--that in spite of the apparently elementary nature of a problem, its solution requires advanced tools of complex analysis.
The Smith Conjecture
Wiktor Stoczkowski, a palaeo-anthropologist, argues that the theories of human origins developed by archaeologists and physical anthropologists from the early nineteenth century to the present day are structurally similar to Western folk theories, and to the speculations of earlier philosophers. Reviewing a remarkable range of thinkers writing in a variety of European languages, he makes a convincing argument for this case. Even though the book criticises the lack of development in theories of human origins, its conclusion is optimistic about the power of the scientific approach to deliver more reliable theories - but only if the influences of popular discourse on its thinking are properly identified.
A theoretical study dealing chiefly with matters of definition and clarification of terms and concepts involved in using Darwinian notions to model social phenomena.