Download Free The Rouge Model Book in PDF and EPUB Free Download. You can read online The Rouge Model and write the review.

Modelland - the FIERCE NEW NOVEL BY TYRA BANKS—IS OUT! No one gets in without being asked. And with her untamable hair, large forehead, and gawky body, Tookie De La Crème isn’t expecting an invitation. Modelland—the exclusive, mysterious place on top of the mountain—never dares to make an appearance in her dreams. But someone has plans for Tookie. Before she can blink her mismatched eyes, Tookie finds herself in the very place every girl in the world obsesses about. And three unlikely girls have joined her. Only seven extraordinary young women become Intoxibellas each year. Famous. Worshipped. Magical. What happens to those who don’t make it? Well, no one really speaks of that. Some things are better left unsaid. Thrown into a world where she doesn’t seem to belong, Tookie glimpses a future that could be hers—if she survives the beastly Catwalk Corridor and terrifying Thigh-High Boot Camp. Along the way, she learns all about friendship, courage, laughter and what it feels like to start to believe in yourself. When you enter the fantastical world of Modelland, you'll see that Tookie was inspired by Tyra’s life as a supermodel. All those crazy and wild adventures Tookie has with her friends? Some of them were ripped straight from the headlines of Tyra’s life! Tyra knows all about beauty and fashion and fierceness, and she shares everything here in MODELLAND. It’s fun, zany, and 100 bazillion-percent Tyra. You don’t want to miss Tyra’s amazing new novel! From the Hardcover edition.
This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.
This book constitutes the proceedings of the 11th International Conference on Big Data and Artificial Intelligence, BDA 2023, held in Delhi, India, during December 7–9, 2023. The17 full papers presented in this volume were carefully reviewed and selected from 67 submissions. The papers are organized in the following topical sections: ​Keynote Lectures, Artificial Intelligence in Healthcare, Large Language Models, Data Analytics for Low Resource Domains, Artificial Intelligence for Innovative Applications and Potpourri.
The automobile has shaped nearly every aspect of modern American life. This text documents the story of the automotive industry, which, despite its power, is constantly struggling to assure its success.
This book explains the role of simple biological model systems in the growth of molecular biology. Essentially the whole history of molecular biology is presented here, tracing the work in bacteriophages in E. coli, the role of other prokaryotic systems, and also the protozoan and algal models - Paramecium and Chlamydomonas, primarily - and the move into eukaryotes with the fungal systems - Neurospora, Aspergillus and yeast. Each model was selected for its appropriateness for asking a given class of questions, and each spawned its own community of investigators. Some individuals made the transition to a new model over time, and remnant communities of investigators continue to pursue questions in all these models, as the cutting edge of molecular biological research flowed onward from model to model, and onward into higher organisms and, ultimately, mouse and man.
Text summarization has been studied for over a half century, but traditional methods process texts empirically and neglect the fundamental characteristics and principles of language use and understanding. Automatic summarization is a desirable technique for processing big data. This reference summarizes previous text summarization approaches in a multi-dimensional category space, introduces a multi-dimensional methodology for research and development, unveils the basic characteristics and principles of language use and understanding, investigates some fundamental mechanisms of summarization, studies dimensions on representations, and proposes a multi-dimensional evaluation mechanism. Investigation extends to incorporating pictures into summary and to the summarization of videos, graphs and pictures, and converges to a general summarization method. Further, some basic behaviors of summarization are studied in the complex cyber-physical-social space. Finally, a creative summarization mechanism is proposed as an effort toward the creative summarization of things, which is an open process of interactions among physical objects, data, people, and systems in cyber-physical-social space through a multi-dimensional lens of semantic computing. The author's insights can inspire research and development of many computing areas. - The first book that proposes the method for the summarization of things in cyber-physical society through a multi-dimensional lens of semantic computing. - A transformation from the traditional application-driven research paradigm into a data-driven research paradigm for creative summarization through information modeling, cognitive modeling and knowledge modeling. - A multi-dimensional methodology for studying, managing, creating and applying methods.
The six-volume set LNCS 12742, 12743, 12744, 12745, 12746, and 12747 constitutes the proceedings of the 21st International Conference on Computational Science, ICCS 2021, held in Krakow, Poland, in June 2021.* The total of 260 full papers and 57 short papers presented in this book set were carefully reviewed and selected from 635 submissions. 48 full and 14 short papers were accepted to the main track from 156 submissions; 212 full and 43 short papers were accepted to the workshops/ thematic tracks from 479 submissions. The papers were organized in topical sections named: Part I: ICCS Main Track Part II: Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Applications of Computational Methods in Artificial Intelligence and Machine Learning; Artificial Intelligence and High-Performance Computing for Advanced Simulations; Biomedical and Bioinformatics Challenges for Computer Science Part III: Classifier Learning from Difficult Data; Computational Analysis of Complex Social Systems; Computational Collective Intelligence; Computational Health Part IV: Computational Methods for Emerging Problems in (dis-)Information Analysis; Computational Methods in Smart Agriculture; Computational Optimization, Modelling and Simulation; Computational Science in IoT and Smart Systems Part V: Computer Graphics, Image Processing and Artificial Intelligence; Data-Driven Computational Sciences; Machine Learning and Data Assimilation for Dynamical Systems; MeshFree Methods and Radial Basis Functions in Computational Sciences; Multiscale Modelling and Simulation Part VI: Quantum Computing Workshop; Simulations of Flow and Transport: Modeling, Algorithms and Computation; Smart Systems: Bringing Together Computer Vision, Sensor Networks and Machine Learning; Software Engineering for Computational Science; Solving Problems with Uncertainty; Teaching Computational Science; Uncertainty Quantification for Computational Models *The conference was held virtually. Chapter “Effective Solution of Ill-posed Inverse Problems with Stabilized Forward Solver” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Kickstart your NLP journey by exploring BERT and its variants such as ALBERT, RoBERTa, DistilBERT, VideoBERT, and more with Hugging Face's transformers library Key FeaturesExplore the encoder and decoder of the transformer modelBecome well-versed with BERT along with ALBERT, RoBERTa, and DistilBERTDiscover how to pre-train and fine-tune BERT models for several NLP tasksBook Description BERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer’s encoder and decoder work. You’ll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you’ll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you’ll be well-versed with using BERT and its variants for performing practical NLP tasks. What you will learnUnderstand the transformer model from the ground upFind out how BERT works and pre-train it using masked language model (MLM) and next sentence prediction (NSP) tasksGet hands-on with BERT by learning to generate contextual word and sentence embeddingsFine-tune BERT for downstream tasksGet to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT modelsGet the hang of the BERT models based on knowledge distillationUnderstand cross-lingual models such as XLM and XLM-RExplore Sentence-BERT, VideoBERT, and BARTWho this book is for This book is for NLP professionals and data scientists looking to simplify NLP tasks to enable efficient language understanding using BERT. A basic understanding of NLP concepts and deep learning is required to get the best out of this book.