Download Free The Root Systems In Sustainable Agricultural Intensification Book in PDF and EPUB Free Download. You can read online The Root Systems In Sustainable Agricultural Intensification and write the review.

Explore an in-depth and insightful collection of resources discussing various aspects of root structure and function in intensive agricultural systems The Root Systems in Sustainable Agricultural Intensification delivers a comprehensive treatment of state-of-the-art concepts in the theoretical and practical aspects of agricultural management to enhance root system architecture and function. The book emphasizes the agricultural measures that enhance root capacity to develop and function under a range of water and nutrient regimes to maximize food, feed, and fibre production, as well as minimize undesirable water and nutrient losses to the environment. This reference includes resources that discuss a variety of soil, plant, agronomy, farming system, breeding, molecular and modelling aspects to the subject. It also discusses strategies and mechanisms that underpin increased water- and nutrient-use efficiency and combines consideration of natural and agricultural systems to show the continuity of traits and mechanisms. Finally, the book explores issues related to the global economy as well as widespread social issues that arise from, or are underpinned by, agricultural intensification. Readers will also benefit from the inclusion of: A thorough introduction to sustainable intensification, including its meaning, the need for the technology, components, and the role of root systems Exploration of the dynamics of root systems in crop and pasture genotypes over the last 100 years Discussion of the interplay between root structure and function with soil microbiome in enhancing efficiency of nitrogen and phosphorus acquisition Evaluation of water uptake in drying soil, including balancing supply and demand Perfect for agronomists, horticulturalists, plant and soil scientists, breeders, and soil microbiologists, The Root Systems in Sustainable Agricultural Intensification will also earn a place in the libraries of advanced undergraduate and postgraduate students in this field who seek a one-stop reference in the area of root structure and function.
Continued population growth, rapidly changing consumption patterns and the impacts of climate change and environmental degradation are driving limited resources of food, energy, water and materials towards critical thresholds worldwide. These pressures are likely to be substantial across Africa, where countries will have to find innovative ways to boost crop and livestock production to avoid becoming more reliant on imports and food aid. Sustainable agricultural intensification - producing more output from the same area of land while reducing the negative environmental impacts - represents a solution for millions of African farmers. This volume presents the lessons learned from 40 sustainable agricultural intensification programmes in 20 countries across Africa, commissioned as part of the UK Government's Foresight project. Through detailed case studies, the authors of each chapter examine how to develop productive and sustainable agricultural systems and how to scale up these systems to reach many more millions of people in the future. Themes covered include crop improvements, agroforestry and soil conservation, conservation agriculture, integrated pest management, horticulture, livestock and fodder crops, aquaculture, and novel policies and partnerships.
Explore an in-depth and insightful collection of resources discussing various aspects of root structure and function in intensive agricultural systems The Root Systems in Sustainable Agricultural Intensification delivers a comprehensive treatment of state-of-the-art concepts in the theoretical and practical aspects of agricultural management to enhance root system architecture and function. The book emphasizes the agricultural measures that enhance root capacity to develop and function under a range of water and nutrient regimes to maximize food, feed, and fibre production, as well as minimize undesirable water and nutrient losses to the environment. This reference includes resources that discuss a variety of soil, plant, agronomy, farming system, breeding, molecular and modelling aspects to the subject. It also discusses strategies and mechanisms that underpin increased water- and nutrient-use efficiency and combines consideration of natural and agricultural systems to show the continuity of traits and mechanisms. Finally, the book explores issues related to the global economy as well as widespread social issues that arise from, or are underpinned by, agricultural intensification. Readers will also benefit from the inclusion of: A thorough introduction to sustainable intensification, including its meaning, the need for the technology, components, and the role of root systems Exploration of the dynamics of root systems in crop and pasture genotypes over the last 100 years Discussion of the interplay between root structure and function with soil microbiome in enhancing efficiency of nitrogen and phosphorus acquisition Evaluation of water uptake in drying soil, including balancing supply and demand Perfect for agronomists, horticulturalists, plant and soil scientists, breeders, and soil microbiologists, The Root Systems in Sustainable Agricultural Intensification will also earn a place in the libraries of advanced undergraduate and postgraduate students in this field who seek a one-stop reference in the area of root structure and function.
Soil Health and Intensification of Agroecosystems examines the climate, environmental, and human effects on agroecosystems and how the existing paradigms must be revised in order to establish sustainable production. The increased demand for food and fuel exerts tremendous stress on all aspects of natural resources and the environment to satisfy an ever increasing world population, which includes the use of agriculture products for energy and other uses in addition to human and animal food. The book presents options for ecological systems that mimic the natural diversity of the ecosystem and can have significant effect as the world faces a rapidly changing and volatile climate. The book explores the introduction of sustainable agroecosystems that promote biodiversity, sustain soil health, and enhance food production as ways to help mitigate some of these adverse effects. New agroecosystems will help define a resilient system that can potentially absorb some of the extreme shifts in climate. Changing the existing cropping system paradigm to utilize natural system attributes by promoting biodiversity within production agricultural systems, such as the integration of polycultures, will also enhance ecological resiliency and will likely increase carbon sequestration. Focuses on the intensification and integration of agroecosystem and soil resiliency by presenting suggested modifications of the current cropping system paradigm Examines climate, environment, and human effects on agroecosystems Explores in depth the wide range of intercalated soil and plant interactions as they influence soil sustainability and, in particular, soil quality Presents options for ecological systems that mimic the natural diversity of the ecosystem and can have significant effect as the world faces a rapidly changing and volatile climate
This book outlines a new paradigm, Sustainable Intensification of Crop Production (SICP), which aims to produce more from the same area of land by increasing efficiency, reducing waste, conserving resources, reducing negative impacts on the environment and enhancing the provision of ecosystem services. The use of ecologically based management strategies can increase the sustainability of agricultural production while reducing off-site consequences. The book also highlights the underlying principles and outlines some of the key management practices and technologies – such as minimum soil disturbance; permanent organic soil covers; species diversification; selection of suitable cultivars, planting time, age and spacing; balanced plant nutrition; agro-ecological pest management; efficient water management; careful management of farm machinery; and integrated crop-livestock production – required to implement SICP. The green revolution (by using high-yielding crop varieties, mono-cropping, fertilization, irrigation, and pesticides) has led to enormous gains in food production and improved world food security. In many countries, however, intensive crop production has had negative impacts on production, ecosystems and the larger environment, putting future productivity at risk. In order to meet the projected demands of a growing population expected to exceed 9 billion by 2050, farmers in the developing world must double food production, a challenge complicated by the effects of climate change and growing competition for land, water and energy. This book will be of immense value to all members of the scientific community involved in teaching, research and extension activities concerning sustainable intensification. The material can be used for teaching post-graduate courses, or as a useful reference guide for policy makers.
The book offers a rich toolkit of relevant, adoptable ecosystem-based practices that can help the world's 500 million smallholder farm families achieve higher productivity, profitability and resource-use efficiency while enhancing natural capital.
The humid highlands in sub-Saharan Africa (SSA) are characterized by high population densities and require intensification. The Consortium for Improving Agriculture-based Livelihoods in Central Africa (CIALCA) has set up a research for development platform in various mandate areas in DR Congo, Burundi, and Rwanda, aiming to identify improved production, market, and nutrition options and facilitating the access for development partners to these options. This platform is supported by capacity building, multi-stakeholder dialogue, and monitoring and evaluation efforts. The conference, facilitated by CIALCA, aimed to (i) take stock of the state-of the art in agricultural intensification in the highlands of SSA and (ii) chart the way forward for agricultural research for development in the humid highlands of SSA, and more specifically in the recently launched Humidtropics Consortium Research Programme, through keynote, oral and poster presentations, and strategic panel discussions.
A joint FAO and World Bank study which shows how the farming systems approach can be used to identify priorities for the reduction of hunger and poverty in the main farming systems of the six major developing regions of the world.
This publication reports on current work in progress to raise the agricultural productivity of a wide range of crops, in eco-friendly ways and in a number of countries around the world, using an agroecological methodology called the System of Crop Intensification (SCI). Through a shift in plant management, SCI allows farmers to increase their production while simultaneously reducing purchased inputs, building soil health, reducing water use, and making plants more resilient to climate change-induced stress.
The Role of Plant Roots in Crop Production presents the state of knowledge on environmental factors in root growth and development and their effect on the improvement of the yield of annual crops. This book addresses the role of roots in crop production and includes references to numerous annual crops. In addition, it brings together the issues and the state-of-the-art technologies that affect root growth, with comprehensive reviews to facilitate efficient, sustainable, economical, and environmentally responsible crop production. Written for plant scientists, crop scientists, horticulturalists, and soil scientists, plant physiologists, breeders, environmental scientists, agronomists, and undergraduate and graduate students in different disciplines of agricultural science, The Role of Plant Roots in Crop Production: Addresses root architecture and development dynamics to help users improve crop productivity Emphasizes crop production, plant nutrition, and soil chemistry relative to root growth and functions Covers root morphology, root functions, nutrient and water uptake by roots, root-soil interactions, root-environment interactions, root-microbe interactions, physiology of root crops, and management practices to improve root growth Supports content with experimental results, and additional data is presented with pictures Increasing food production worldwide has become a major issue in the 21st century. Stagnation in grain yield of important food crops in recent years in developed, as well as developing, countries has contributed to a sharp increase in food prices. Furthermore, higher grain yield will be needed in the future to feed a burgeoning world population with a rising standard of living that requires more grain per capita. Technologies that enhance productivity, ensure environmental safety, and conserve natural resources are required to meet this challenge.