Download Free The Role Of The P2x7 Receptor In Bone Cell Function Book in PDF and EPUB Free Download. You can read online The Role Of The P2x7 Receptor In Bone Cell Function and write the review.

This detailed volume covers diverse aspects of P2X7 receptor analysis, ranging from its molecular structure to related pharmacological and immunological tools, via its analysis in heterologous expression systems as well as assays using primary cells and whole animal models. After three introductory chapters that focus on its structure, ligands, and physiological functions, the book details the generation of antibody and nanobody tools for P2X7 receptors, provides protocols for the analysis of expressed P2X7 receptors with a focus on their electrophysiological analysis, as well as protocols for the investigation of P2X7 down-stream signaling in immune cells by flow cytometry. Mouse models and procedures suited to investigate P2X7-mediated effects in other primary cells and in vivo are also explained. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, The P2X7 Receptor: Methods and Protocols is a valuable reference not only for the growing community fascinated by this unusual ion channel but also for a broad readership interested in ion channels or purinergic receptors.
Principles of Bone Biology provides the most comprehensive, authoritative reference on the study of bone biology and related diseases. It is the essential resource for anyone involved in the study of bone biology. Bone research in recent years has generated enormous attention, mainly because of the broad public health implications of osteoporosis and related bone disorders. - Provides a "one-stop" shop. There is no need to search through many research journals or books to glean the information one wants...it is all in one source written by the experts in the field - The essential resource for anyone involved in the study of bones and bone diseases - Takes the reader from the basic elements of fundamental research to the most sophisticated concepts in therapeutics - Readers can easily search and locate information quickly as it will be online with this new edition
Biological Mechanisms of Tooth Movement This new edition continues to be an authoritative reference to the scientific foundations underpinning clinical orthodontics The newly and thoroughly revised Third Edition of Biological Mechanisms of Tooth Movement delivers a comprehensive reference for orthodontic trainees and specialists. It is fully updated to include new chapters on personalized orthodontics as well as the inflammatory process occurring in the dental and paradental tissues. It is heavily illustrated throughout, making it easier for readers to understand and retain the information discussed within. The topics covered range from bone biology, the effects of mechanical loading on tissues and cells, genetics, tissue remodeling, and the effects of diet, drugs, and systemic diseases. The Third Edition of Biological Mechanisms of Tooth Movement features seven sections that cover subjects such as: The development of biological concepts in orthodontics, including the cellular and molecular biology behind orthodontic tooth movement Mechanics meets biology, including the effects of mechanical loading on hard and soft tissues and cells, and biological reactions to temporary anchorage devices Inflammation and orthodontics, including markers for tissue remodeling in the gingival crevicular fluid and saliva Personalized diagnosis and treatment based on genomic criteria, including the genetic influences on orthodontic tooth movement Rapid orthodontics, including methods to accelerate or decelerate orthodontic tooth movement Perfect for residents and PhD students of orthodontic and periodontal programs, Biological Mechanisms of Tooth Movement is also useful to academics, clinicians, bone biologists, and researchers with an interest in the mechanics and biology of tooth movement.
Bone Remodeling Process: Mechanics, Biology, and Numerical Modeling provides a literature review. The first part of the book discusses bones in a normal physiological condition, bringing together the involved actors and factors reported over the past two decades, and the second discusses pathological conditions, highlighting the attack vectors of each bone disease. The third part is devoted to the mathematical descriptions of bone remodeling, formulated to develop models able to provide information that is not amenable to direct measurement, while the last part focuses on models using the finite element method in investigating bone biomechanics.This book creates an overall image of the complex communication network established between the diverse remodeling actors, based on overwhelming control evidence revealed over recent years, as well as visualizes the remodeling defects and possible treatments in each case. It also regroups the models allowing readers to analyze and assess bone mechanical and biological properties. This book details the cellular mechanisms allowing the bone to adapt its microarchitecture to the requirements of the human body, which is the main issue in bone biology and presents the evolution of mathematical modeling used in a bone computer simulation. - Each chapter covers a core topic in bone biomechanics - Provides a multidisciplinary view that effectively links orthopaedics, cellular biology, mechanics, and computer simulation - Draws an overall image about bone biology and cell interactions, for identifying cell populations that are crucial for the remodeling process
The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography
Tumor Immunology and Immunotherapy – Molecular Methods, Volume 629, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Chapters in this release include Droplet digital PCR for measuring circulating tumor-derived DNA, Detection and quantification of cytosolic DNA, Methods to detect endogenous dsRNA induction and recognition, Quantification of eIF2alpha phosphorylation during immunogenic cell death, Assessment of annexin A1 release during immunogenic cell death, Luciferase-assisted detection of extracellular ATP in the course of ICD, The P2X7 receptor: structure and function, and much more. - Contains the authority of authors who are leaders in their field - Provides a comprehensive source on new methods and research in enzymology
This is an overview of the fast-moving field of purinergic signalling through adenosine and ATP receptors. - Authors are the leading authorities in their fields - Subject matter is important for understanding tissue protection - Subject matter is of intense interest for new drug development
ATP's powerful impact on the heart and blood vessels was first described in 1929, but it was not until the 1970s that ATP was proposed as the 'purinergic' neurotransmitter in autonomic nerves. The door to this area of research was thrown open when receptors for ATP and its ectoenzymatic breakdown product adenosine were first cloned in the early 199
Epilepsy is a devastating group of neurological disorders characterized by periodic and unpredictable seizure activity in the brain. There is a critical need for new drugs and approaches given than at least one-third of all epilepsy patients are not made free of seizures by existing medications and become "medically refractory". Much of epilepsy research has focused on neuronal therapeutic targets, but current antiepileptic drugs often cause severe cognitive, developmental, and behavioral side effects. Recent findings indicate a critical contribution of astrocytes, star-shaped glial cells in the brain, to neuronal and network excitability and seizure activity. Furthermore, many important cellular and molecular changes occur in astrocytes in epileptic tissue in both humans and animal models of epilepsy. The goal of Astrocytes and Epilepsy is to comprehensively review exciting findings linking changes in astrocytes to functional changes responsible for epilepsy for the first time in book format. These insights into astrocyte contribution to seizure susceptibility indicate that astrocytes may represent an important new therapeutic target in the control of epilepsy. Astrocytes and Epilepsy includes background explanatory text on astrocyte morphology and physiology, epilepsy models and syndromes, and evidence from both human tissue studies and animal models linking functional changes in astrocytes to epilepsy. Beautifully labelled diagrams are presented and relevant figures from the literature are reproduced to elucidate key findings and concepts in this rapidly emerging field. Astrocytes and Epilepsy is written for neuroscientists, epilepsy researchers, astrocyte investigators as well as neurologists and other specialists caring for patients with epilepsy. - Presents the first comprehensive book to synthesize historical and recent research on astrocytes and epilepsy into one coherent volume - Provides a great resource on the field of astrocyte biology and astrocyte-neuron interactions - Details potential therapeutic targets, including chapters on gap junctions, water and potassium channels, glutamate and adenosine metabolism, and inflammation
Temporomandibular disorders (TMDs), are a set of more than 30 health disorders associated with both the temporomandibular joints and the muscles and tissues of the jaw. TMDs have a range of causes and often co-occur with a number of overlapping medical conditions, including headaches, fibromyalgia, back pain and irritable bowel syndrome. TMDs can be transient or long-lasting and may be associated with problems that range from an occasional click of the jaw to severe chronic pain involving the entire orofacial region. Everyday activities, including eating and talking, are often difficult for people with TMDs, and many of them suffer with severe chronic pain due to this condition. Common social activities that most people take for granted, such as smiling, laughing, and kissing, can become unbearable. This dysfunction and pain, and its associated suffering, take a terrible toll on affected individuals, their families, and their friends. Individuals with TMDs often feel stigmatized and invalidated in their experiences by their family, friends, and, often, the health care community. Misjudgments and a failure to understand the nature and depths of TMDs can have severe consequences - more pain and more suffering - for individuals, their families and our society. Temporomandibular Disorders: Priorities for Research and Care calls on a number of stakeholders - across medicine, dentistry, and other fields - to improve the health and well-being of individuals with a TMD. This report addresses the current state of knowledge regarding TMD research, education and training, safety and efficacy of clinical treatments of TMDs, and burden and costs associated with TMDs. The recommendations of Temporomandibular Disorders focus on the actions that many organizations and agencies should take to improve TMD research and care and improve the overall health and well-being of individuals with a TMD.