Download Free The Role Of Solar Ultraviolet Radiation In Marine Ecosystems Book in PDF and EPUB Free Download. You can read online The Role Of Solar Ultraviolet Radiation In Marine Ecosystems and write the review.

The inspiration for this monograph derived from the realization that human technical capacity has become so great that we can, even without malice, substantially modify and damage the gigantic and remote outer limit of our planet, the stratosphere. Above the atmosphere of our ordinary experience, the stratosphere is a tenuous layer of gas, blocked from rapid exchange with the troposphere, some twenty kilometers above the surface of the earth, seldom reached by humans, and yet a fragile shell which shields life on earth from a band of solar radiation of demonstrable injurious potential. It is immediately obvious that if stratospheric ozone were reduced and consequently the intensity of solar ultraviolet radiation reaching the earth's surface were increased, then human skin cancer, known to be related to solar ultraviolet exposure, would also be increased. But how does one even begin to estimate the impact of changed solar ultraviolet radiation on such a diverse. interacting, and complex ecosystem as the oceans? Studies which I conducted in Iceland focused on this question and were noted to the Marine Sciences Panel of the Scientific Affairs Committee of NATO by Professor Unnsteinn Stefansson, leading to a request to investigate the possibility of organizing a NATO sponsored Advanced Research Institute on this topic.
This book, first published in 2000, provides a comprehensive, multidisciplinary review of UV radiation effects in the marine environment. It is aimed at researchers and graduate students in photobiology, photochemistry and environmental science. It will also be useful as a supplementary text for courses in oceanography, climatology and ecology.
Antarctic Ecosystems comprises 55 papers presented at the Fifth Symposium on Antarctic Biology held under the auspices of the Scientific Committee on Antarctic Research (SCAR) in Hobart, Australia, 29 August - 3 September, 1988. Both short- and long-term changes in ecosystems and community structures caused by natural and human factors were discussed to help understand the ecological processes taking place in a changing environment. The variability of ecological factors must be known for the development of realistic monitoring strategies and sound conservation practices.
This book offers extensive coverage of the most important aspects of UVR effects on all aquatic (not just freshwater and marine) ecosystems, encompassing UV physics, chemistry, biology and ecology. Comprehensive and up-to-date, UV Effects in Aquatic Organisms and Ecosystems aims to bridge the gap between environmental studies of UVR effects and the broader, traditional fields of ecology, oceanography and limnology. Adopting a synthetic approach, the different sections cover: the physical factors controlling UVR intensity in the atmosphere; the penetration and distribution of solar radiation in natural waters; the main photochemical process affecting natural and anthropogenic substances; and direct and indirect effects on organisms (from viruses, bacteria and algae to invertebrate and vertebrate consumers). Researchers and professionals in environmental chemistry, photochemistry, photobiology and cell and molecular biology will value this book, as will those looking at ozone depletion and global change.
Numerous studies report that ultraviolet (UV) radiation is harmful to living organisms and detrimental to human health. Growing concerns regarding the increased levels of UV-B radiation that reach the earth's surface have led to the development of ground- and space-based measurement programs. Further study is needed on the measurement, modeling, and effects of UV radiation. The chapters of this book describe the research conducted across the globe over the past three decades in the areas of: (1) current and predicted levels of UV radiation and its associated impact on ecosystems and human health, as well as economic and social implications; (2) new developments in UV instrumentation, advances in calibration (ground- and satellite-based), measurement methods, modeling efforts, and their applications; and (3) the effects of global climate change on UV radiation. Dr. Wei Gao is a Senior Research Scientist and the Director of the USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University. Dr. Gao is a SPIE fellow and serves as the Editor-in-Chief for the Journal of Applied Remote Sensing. Dr. Daniel L. Schmoldt is the National Program Leader for instrumentation and sensors at the National Institute of Food and Agriculture (NIFA) of the U.S. Department of Agriculture. Dr. Schmoldt served as joint Editor-in-Chief of the journal, Computers & Electronics in Agriculture, from 1997 to 2004. Dr. James R. Slusser retired in 2007 from the USDA UV-B Monitoring and Research Program at Colorado State University. He was active in the Society of Photo-Optical Instrumentation Engineers, the American Geophysical Union, and the American Meteorological Society. Dr. Slusser is currently pursuing his interests in solar energy and atmospheric transmission.
This volume emphasizes the involvement of all facets of biology in the analysis of environmentally controlled movement responses. This includes biophysics, biochemistry, molecular biology and as an integral part of any approach to a closer understanding, physiology. The initial euphoria about molecular biology as the final solution for any problem has dwindled and the field agrees now that only the combined efforts of all facets of biology will at some day answer the question posed more than hundred years ago: "How can plants see?". One conclusion can be drawn from the current knowledge as summarized in this volume. The answer will most likely not be the same for all systems.
This work synthesizes the current state of knowledge on the biology of polar benthic marine algae and presents an outlook on their responses to changing environmental conditions in polar regions. Topics treated include environment, biodiversity and biogeography of micro- and macroalgae, including an update of the knowledge of the red algal flora of Antarctica. It treats the chemical ecology as well as the primary production and ecophysiology of polar benthic algae with new information on the important contribution of benthic microalgae to the productivity in costal areas.
Global climate change affects productivity and species composition of freshwater and marine aquatic ecosystems by raising temperatures, ocean acidification, excessive solar UV and visible radiation. Effects on bacterioplankton and viruses, phytoplankton and macroalgae have farreaching consequences for primary consumers such as zooplankton, invertebrates and vertebrates, as well as on human consumption of fish, crustaceans and mollusks. It has affected the habitation of the Arctic and Antarctic oceans the most so far. Increasing pollution from terrestrial runoff, industrial, municipal and household wastes as well as marine transportation and plastic debris also affect aquatic ecosystems.