Download Free The Role Of Rapid Solidification Processing In The Fabrication Of Fiber Reinforced Metal Matrix Composites Book in PDF and EPUB Free Download. You can read online The Role Of Rapid Solidification Processing In The Fabrication Of Fiber Reinforced Metal Matrix Composites and write the review.

This book represents a collection of papers presented at the NATO Advanced Research Workshop (NATO/ARW) on "Science and Technology of Rapid Solidification and Processing", held at Hotel Thayer, West Point Military Academy, New York, N. Y. , during June 21-24, 1994. The workshop was attended by over forty scientists representing several NATO member countries as well as representatives from Japan, China (PRC), Taiwan and India. The purpose of this NATO/ARW conference was to review the major advances made in most recent years in both the theoretical and experimental areas of rapid solidification technology and processing. In accordance with the NATO/ARW format, the agenda for the conference was so arranged to offer in depth presentation of the latest developments in the subject area as well as to encourage follow-up discussions by the participants. There was seven sessions each opened with a lecture by an invited guest speaker. Sessions 1-4, covered two days of the conference and focused mainly on Processing Technologies of Rapid Solidification and Thermodynamic Properties (Practical Applications). Sessions 4-6 concentrated on Thermodynamics of Metastable Alloys, Relaxation, Diffusion, Magnetic and Electric Properties (Fundamentals). Session 6 was devoted to the Structural Characterization of Supercooled Melts, Ultra Fine Polycrystalline Materials (New Innovations and Techniques). There were two equally important aspects of this NATO/ARW conference which must be mentioned. Firstly, this is the first NATO/ARW conference on Science and Technology of Rapid Solidification and Processing held in the United States.
"Solidification Processing of Metal Matrix Composites" (MMCs) focuses primarily on microcomposites but also covers macrocomposites, nanocomposites and foams. There are four main areas detailed: fundamentals of solidification synthesis, which examines issues related to stir mixing, pressure infiltration, transfer of particles or fibers through gas-liquid and liquid-solid interfaces, and particle/fiber interactions with fluids; processing and microstructures, which focuses on microstructure formation during solidification of MMC under different conditions, such as nucleation, growth, heat transfer, microsegregation, macrosegregation and interactions between solidifying interfaces, particles and fibers; and, properties of solidification processing, covering the relationship between the microstructures and properties. Comparisons are made between properties of solidification processed composites and monolithic and composites made by solid and vapor phase processes. It also details the application of solidification processed MMCs, revealing current and future applications especially in automotive, aerospace, railroad, thermal management, electromechanical machinery and recreational equipment sectors.
Much of the success of composites can be attributed to the development of innovative processes. Many useful composites are envisaged by materials scientists but the problem of how to make them is often the greater hurdle. This process-oriented book focuses on the basic principles of composite fabrication. Upon studying these processes, one is immediately struck by the diversity of ideas and techniques. In some cases, these have been borrowed from other technologies and were designed for use with quite different materials. In other cases some very clever new means have been developed which take account of the characteristics of metals and ceramics and the higher temperatures which are typically involved in their processing.
Rapid solidification processing results in increased strength, and fracture and fatigue resistance of alloys, with concurrent improvements in mechanical, physical and chemical properties. This volume provides a systematic examination of this technology, including metallurgical aspects, processing methods, alloy design, and applications. Each chapter was prepared by a specialist for this volume. The text is well illustrated with more than 400 micrographs and schematics. More than 75 tables provide important reference data.