Download Free The Rise And Fall Of The Black Hole Paradigm Book in PDF and EPUB Free Download. You can read online The Rise And Fall Of The Black Hole Paradigm and write the review.

Black holes have turned out to be the cornerstone of both physics and popular belief. But what if we were to realize that exact black holes cannot exist, even though their existence is apparently suggested by exact general relativistic solutions, and Roger Penrose won the 2020 Nobel Prize in Physics ‘for the discovery that black hole formation is a robust prediction of the general theory of relativity’? While it might seem far-fetched to claim so, it will be worth remembering that the finest theoretical physicists like Albert Einstein and Paul Dirac did not believe in black holes, and Stephen Hawking finally thought that there are no exact black holes. While the black hole paradigm has become commonplace in popular consciousness, in the last decade, noise has consistently grown about the many physical effects which can inhibit the formation of exact mathematical black holes. In The Rise and Fall of the Black Hole Paradigm, Abhas Mitra shows us how, much before these developments, he had proven why the so-called black holes must only be black hole pretenders. He identified these black hole candidates to be Magnetospheric Eternally Collapsing Objects (MECOs) and, along with Darryl J. Leiter and Stanley L. Robertson, generalized them. Recent evidence for the existence of strong magnetic fields around so-called black holes may provide confirmations of his claim.
This 2004 textbook fills a gap in the literature on general relativity by providing the advanced student with practical tools for the computation of many physically interesting quantities. The context is provided by the mathematical theory of black holes, one of the most elegant, successful, and relevant applications of general relativity. Among the topics discussed are congruencies of timelike and null geodesics, the embedding of spacelike, timelike and null hypersurfaces in spacetime, and the Lagrangian and Hamiltonian formulations of general relativity. Although the book is self-contained, it is not meant to serve as an introduction to general relativity. Instead, it is meant to help the reader acquire advanced skills and become a competent researcher in relativity and gravitational physics. The primary readership consists of graduate students in gravitational physics. It will also be a useful reference for more seasoned researchers working in this field.
Sample Text
This book is based on the lecture notes of a one-semester course on black hole astrophysics given by the author and is aimed at advanced undergraduate and graduate students with an interest in astrophysics. The material included goes beyond that found in classic textbooks and presents details on astrophysical manifestations of black holes. In particular, jet physics and detailed accounts of objects like microquasars, active galactic nuclei, gamma-ray bursts, and ultra-luminous X-ray sources are covered, as well as advanced topics like black holes in alternative theories of gravity. The author avoids unnecessary technicalities and to some degree the book is self-contained. The reader will find some basic general relativity tools in Chapter 1. The appendices provide some additional mathematical details that will be useful for further study, and a guide to the bibliography on the subject.
- A unique exposition of the foundations of the quantum theory of black holes including the impact of string theory, the idea of black hole complementarily and the holographic principle bull; Aims to educate the physicist or student of physics who is not an expert on string theory, on the revolution that has grown out of black hole physics and string theory
From Nobel prize-winner Roger Penrose, this groundbreaking book is for anyone "who is interested in the world, how it works, and how it got here" (New York Journal of Books). Penrose presents a new perspective on three of cosmology’s essential questions: What came before the Big Bang? What is the source of order in our universe? And what cosmic future awaits us? He shows how the expected fate of our ever-accelerating and expanding universe—heat death or ultimate entropy—can actually be reinterpreted as the conditions that will begin a new “Big Bang.” He details the basic principles beneath our universe, explaining various standard and non-standard cosmological models, the fundamental role of the cosmic microwave background, the paramount significance of black holes, and other basic building blocks of contemporary physics. Intellectually thrilling and widely accessible, Cycles of Time is a welcome new contribution to our understanding of the universe from one of our greatest mathematicians and thinkers.
In this masterfully written and brilliantly informed work, Dr. Rhorne, the Feynman Professor of Theoretical Physics at Caltech, leads readers through an elegant, always human, tapestry of interlocking themes, answering the great question: what principles control our universe and why do physicists think they know what they know? Features an introduction by Stephen Hawking.
A collection of essays on the cosmos, written by an American Museum of Natural History astrophysicist, includes "Holy Wars," "Ends of the World," and "Hollywood Nights."
'Clear and compact ... It's hard to fault as a brief, easily digestible introduction to some of the biggest questions in the Universe' Giles Sparrow, BBC Four's The Sky at Night , Best astronomy and space books of 2019: 5/5 All the matter and light we can see in the universe makes up a trivial 5 per cent of everything. The rest is hidden. This could be the biggest puzzle that science has ever faced. Since the 1970s, astronomers have been aware that galaxies have far too little matter in them to account for the way they spin around: they should fly apart, but something concealed holds them together. That 'something' is dark matter - invisible material in five times the quantity of the familiar stuff of stars and planets. By the 1990s we also knew that the expansion of the universe was accelerating. Something, named dark energy, is pushing it to expand faster and faster. Across the universe, this requires enough energy that the equivalent mass would be nearly fourteen times greater than all the visible material in existence. Brian Clegg explains this major conundrum in modern science and looks at how scientists are beginning to find solutions to it.