Download Free The Redox Properties And Redox Reactions Of High Oxidation State Ruthenium Polypyridyl Complexes Book in PDF and EPUB Free Download. You can read online The Redox Properties And Redox Reactions Of High Oxidation State Ruthenium Polypyridyl Complexes and write the review.

The investigation and development of transition metal complexes as cancer chemotherapeutics has gained a lot of interest in the past few decades and has become a promising area of research. Metal complexes of platinum and ruthenium in particular that have demonstrated success as anticancer drugs or are under exploration currently for clinical use are highlighted in Chapter 1. Chapter 2 describes studies undertaken to understand the neurotoxicity of ruthenium(II) polypyridyl complexes (RPCs), including toxicity in mice and inhibition of the enzyme acetylcholinesterase (AChE), as previous work by Dwyer demonstrated that RPCs could be acutely toxic in mice, presumably due to their inhibition of AChE. Several ruthenium complexes were screened for their enzyme inhibitory potency which was correlated to their structural properties including size, charge, and lipophilicity. In addition, the inhibitory activity of the compounds was correlated to their animal toxicity data so as to understand the potential mode of action of the RPCs in vivo. Chapter 3 describes the synthesis of a series of novel ruthenium(II) polypyridyl complexes and their characterization. These complexes were prepared in an effort to tune the reduction potential of the redox-active intercalating ligand (RAIL) to potentials slightly above and below those observed for the Ru-tatpp complexes. The redox activity of ruthenium-tatpp complexes appears to be responsible for their DNA cleavage activity and these analogues, with slightly different reduction potentials, should give us additional insight into the activity of this class of RPCs. In Chapter 4, the electrochemical properties of the RPCs were measured and correlated with their ability to cause DNA cleavage under reducing conditions with GSH. Complexes with reduction potentials less (more positive) than the redox couple of GSH/GSSG were shown to efficiently cleave DNA. However complexes with higher reduction potentials than the biological reducing agent were not observed to cleave DNA under the same conditions. Cytotoxicity screening of these complexes in human non-small cell lung carcinoma cell lines (NSCLC -- H358 and HOP-62) and breast adenocarcinoma cell line (MCF-7), as well as the non-malignant cell line (MCF-10) was performed and described in Chapter 4.
Edited by a team of highly respected researchers combining their expertise in chemistry, physics, and medicine, this book focuses on the use of rutheniumcontaining complexes in artificial photosynthesis and medicine. Following a brief introduction to the basic coordination chemistry of ruthenium complexes and their synthesis in section one, as well as their photophysical and photochemical properties, the authors discuss in detail the major concepts of artificial photosynthesis and mechanisms of hydrogen production and water oxidation with ruthenium in section two. The third section of the text covers biological properties and important medical applications of ruthenium complexes as therapeutic agents or in diagnostic imaging. Aimed at stimulating research in this active field, this is an invaluable information source for researchers in academia, health research institutes and governmental departments working in the field of organometallic chemistry, green and sustainable chemistry as well as medicine/drug discovery, while equally serving as a useful reference also for scientists in industry.
Organic Redox Chemistry Explore the most recent advancements and synthesis applications in redox chemistry Redox chemistry has emerged as a crucial research topic in synthetic method development. In Organic Redox Chemistry: Chemical, Photochemical and Electrochemical Syntheses, some key researchers in this field, including editors Dr. Frédéric W. Patureau and the late Dr. Jun-Ichi Yoshida, deliver an insightful exploration of this rapidly developing topic. This book highlights electron transfer processes in synthesis by using different techniques to initiate them, allowing for a multi-directional perspective in organic redox chemistry. Covering a wide array of the important and recent developments in the field, Organic Redox Chemistry will earn a place in the libraries of chemists seeking a one-stop resource that compares chemical, photochemical, and electrochemical methods in organic synthesis.
This book will describe Ruthenium complexes as chemotherapeutic agent specifically at tumor site. It has been the most challenging task in the area of cancer therapy. Nanoparticles are now emerging as the most effective alternative to traditional chemotherapeutic approach. Nanoparticles have been shown to be useful in this respect. However, in view of organ system complicacies, instead of using nanoparticles as a delivery tool, it will be more appropriate to synthesize a drug of nanoparticle size that can use blood transport mechanism to reach the tumor site and regress cancer. Due to less toxicity and effective bio-distribution, ruthenium (Ru) complexes are of much current interest. Additionally, lumiscent Ru-complexes can be synthesized in nanoparticle size and can be directly traced at tissue level. The book will contain the synthesis, characterization, and applications of various Ruthenium complexes as chemotherapeutic agents. The book will also cover the introduction to chemotherapy, classification of Ru- complexes with respect to their oxidation states and geometry, Ruthenium complexes of nano size: shape and binding- selectivity, binding of ruthenium complexes with DNA, DNA cleavage studies and cytotoxicity. The present book will be more beneficial to researchers, scientists and biomedical. Current book will empower specially to younger generation to create a new world of ruthenium chemistry in material science as well as in medicines. This book will be also beneficial to national/international research laboratories, and academia with interest in the area of coordination chemistry more especially to the Ruthenium compounds and its applications.
Ruthenium Oxidation Complexes explores ruthenium complexes, particularly those in higher oxidation states, which function as useful and selective organic oxidation catalysts. Particular emphasis is placed on those systems which are of industrial significance. The preparation, properties and applications of the ruthenium complexes are described, followed by a presentation of their oxidative properties and summary of the different mechanisms involved in the organic oxidations (e.g. oxidations of alcohols, alkenes, arenes and alkynes, alkanes, amines, ethers, phopshines and miscellaneous substrates). Moreover, future trends and developments in the area are discussed. This monograph is aimed at inorganic, organic, industrial and catalysis chemists, especially those who wish to carry out specific organic oxidations using catalytic methods.
The book "Redox" provides vast insight into the oxidation-reduction reactions to its readers. The book consists of three sections that include redox in the coordination compounds, organic compounds and polymerization; redox in electrochemistry; and redox and fish welfare. The first section consists of three chapters that describe the role of redox reactions in several fields such as transition metal chemistry, degradation processes of toxic compounds and dyes in treatment of water and wastewater, the catalysis of oxidation of organic compounds by metal active sites, and synthesis of copolymers. The second section consists of two chapters. The role of redox reactions and reactivity description of compounds are discussed in the second section of the book. The non-aqueous redox flow batteries are described in this section. The third section extensively discusses the redox balance and fish welfare and consists of one chapter.