Download Free The Recycling Magnet Book in PDF and EPUB Free Download. You can read online The Recycling Magnet and write the review.

Metal recycling is a complex business that is becoming increasingly difficult! Recycling started long ago, when people realized that it was more resource- and cost-efficient than just throwing away the resources and starting all over again. In this report, we discuss how to increase metal-recycling rates - and thus resource efficiency - from both quantity and quality viewpoints. The discussion is based on data about recycling input, and the technological infrastructure and worldwide economic realities of recycling. Decision-makers set increasingly ambitious targets for recycling, but far too much valuable metal today is lost because of the imperfect collection of end-of-life (EoL) products, improper practices, or structural deficiencies within the recycling chain, which hinder achieving our goals of high resource efficiency and resource security, and of better recycling rates.
Water Electrical and Electronic Equipment Recycling: Aqueous Recovery Methods provides data regarding the implementation of aqueous methods of processing of WEEEs at the industrial level. Chapters explore points-of-view of worldwide researchers and research project managers with respect to new research developments and how to improve processing technologies. The text is divided into two parts, with the first section addressing the new research regarding the hydrometallurgical procedures adopted from minerals processing technologies. Other sections cover green chemistry, bio-metallurgy applications for WEEE treatment and the current developed aqueous methods at industrial scale. A conclusion summarizes existing research with suggestions for future actions. - Provides a one-stop reference for hydrometallurgical processes of metal recovery from WEEE - Includes methods presented through intended applications, including waste printed circuit boards, LCD panels, lighting and more - Contains suggestions and recommendations for future actions and research prospects
The recycling of rare earth elements is one of the great challenges for establishing a green economy. Rare earths play an essential role in a great many high-tech products and processes: electronic display screens , computer monitors, cell phones, rechargeable batteries, high-strength magnets, catalytic converters, fluorescent lamps etc. Recycling these materials not only results in valuable materials for new products; it also helps in reducing mountains of discarded products. The recycling methods discussed include bioleaching, biosorption, siderophores, algae and seaweed. carbon-based nanomaterials, silica, pyrometallurgy, electrochemistry, hydrometallurgy, solvent extraction and the use of various absorbents. The book references 253 original resources with their direct web links for in-depth reading. Keywords: Rare Earths, Bioleaching, Biosorption, Siderophores, Algae, Seaweed. Carbon-based Nanomaterials, Silica, Pyrometallurgy, Electrochemistry, Hydrometallurgy, Solvent Extraction, Absorbents, Ash, Slag, Red Mud, Contaminated Soil.
Plastic bottles, cardboard boxes, aluminium cans... we all get through a lot of rubbish, but do you really know what happens after you put it in the bin? Are you even sure which bin it goes in? Recycling has never been more important – but it has also never been more complicated. Where do you put bottle lids? Why can't black plastic be recycled? What do you do with labels? The Rubbish Book answers all these questions and many more, providing you with all the information you need to become a true recycling expert, so you can help protect the planet with confidence. Written by an award-winning sustainability expert, it includes an A–Z of household items and whether they can be recycled; an in-depth look at the collection and sorting processes; a break-down of what the recycling symbols on our packaging actually mean; and an insight into the future of recycling and the new materials that will change the way we look at rubbish for ever.
This collection presents the papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Paper topics include the extraction and processing of elements like antimony, arsenic, calcium, chromium, hafnium, gold, indium, lithium, molybdenum, niobium, rare earth metals, rhenium, scandium, selenium, silver, strontium, tantalum, tellurium, tin, tungsten, vanadium, and zirconium. Rare processing techniques presented include bio leaching, molecular recognition technology, recovery of valuable components of commodity metals such as magnesium from laterite process wastes, titanium from ilmenites, and rare metals from wastes such as phosphors and LCD monitors.
Winner of the International Solid Waste Association's 2014 Publication Award, Handbook of Recycling is an authoritative review of the current state-of-the-art of recycling, reuse and reclamation processes commonly implemented today and how they interact with one another. The book addresses several material flows, including iron, steel, aluminum and other metals, pulp and paper, plastics, glass, construction materials, industrial by-products, and more. It also details various recycling technologies as well as recovery and collection techniques. To completely round out the picture of recycling, the book considers policy and economic implications, including the impact of recycling on energy use, sustainable development, and the environment. With contemporary recycling literature scattered across disparate, unconnected articles, this book is a crucial aid to students and researchers in a range of disciplines, from materials and environmental science to public policy studies. - Portrays recent and emerging technologies in metal recycling, by-product utilization and management of post-consumer waste - Uses life cycle analysis to show how to reclaim valuable resources from mineral and metallurgical wastes - Uses examples from current professional and industrial practice, with policy and economic implications
The recycling of rare earth elements is one of the great challenges for establishing a green economy. Rare earths play an essential role in a great many high-tech products and processes: electronic display screens , computer monitors, cell phones, rechargeable batteries, high-strength magnets, catalytic converters, fluorescent lamps etc. Recycling these materials not only results in valuable materials for new products; it also helps in reducing mountains of discarded products. The recycling methods discussed include bioleaching, biosorption, siderophores, algae and seaweed. carbon-based nanomaterials, silica, pyrometallurgy, electrochemistry, hydrometallurgy, solvent extraction and the use of various absorbents. The book references 253 original resources with their direct web links for in-depth reading. Keywords: Rare Earths, Bioleaching, Biosorption, Siderophores, Algae, Seaweed. Carbon-based Nanomaterials, Silica, Pyrometallurgy, Electrochemistry, Hydrometallurgy, Solvent Extraction, Absorbents, Ash, Slag, Red Mud, Contaminated Soil.
This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DoE) based on data collected and research performed during 2010. In the report, DoE describes plans to: (1) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the DoE during November and December 2010; (2) strengthen its capacity for information-gathering on this topic; and (3) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. Charts and tables. This is a print on demand report.