Download Free The Quantum Beat Book in PDF and EPUB Free Download. You can read online The Quantum Beat and write the review.

This work reviews the principles underlying quantum-based atomic clocks, with introductory chapters placing them in context with the development of mechanical clocks and electronic quartz-controlled clocks. The book details design principles of the rubidium, cesium, hydrogen maser, and mercury ion standards; changes enabled by the advent of the laser; and the time-based global navigation systems, Loran-C and the Global Positioning System. The new edition includes such recent developments as clocks based on quantum resonance at optical frequency in individual ions confined in miniature electromagnetic traps. The Quantum Beat explores the subject with a minimum of mathematical formalism.
The Quantum Challenge, Second Edition, is an engaging and thorough treatment of the extraordinary phenomena of quantum mechanics and of the enormous challenge they present to our conception of the physical world. Traditionally, the thrill of grappling with such issues is reserved for practicing scientists, while physical science, mathematics, and engineering students are often isolated from these inspiring questions. This book was written to remove this isolation.
“The Quantum Spy takes us to a whole new level of intrigue and espionage. It’s also unbelievably timely. In short: David Ignatius knows his stuff.” —Wolf Blitzer A hyper-fast quantum computer is the digital equivalent of a nuclear bomb; whoever possesses one will be able to shred any encryption and break any code in existence. The question is: who will build one first, the U.S. or China? In this gripping thriller, U.S. quantum research labs are compromised by a suspected Chinese informant, inciting a mole hunt of history-altering proportions. CIA officer Harris Chang leads the charge, pursuing his target from Singapore to Mexico and beyond. Do the leaks expose real secrets, or are they false trails meant to deceive the Chinese? The answer forces Chang to question everything he thought he knew about loyalty, morality, and the primacy of truth.
THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT In August of 1995, a group of over 70 physicists met at York University for a three-day symposium in honour of Professor Jean-Pierre Vigier. The attendance included theoretical and experimental physicists, mathematicians, astronomers and colleagues concerned with issues in the philosophy of science. The symposium was entitled "The Present Status of the Quantum Theory of Light" in accordance with Professor Vigier's wishes but in fact encompassed many of the areas to which Professor Vigier has contributed over his long and distinguished career. These include stochastic interpretations of quantum mechanics, particle physics, and electromagnetic theory. The papers presented at the symposium have been arranged in this proceedings in the following approximate order: ideas about the nature of light and photons, electrodynamiCS, the formulation and interpretation of quantum mechanics, and aspects of relativity theory. Some of the papers presented deal with alternate interpretations of quantum phenomena in the tradition of Vigier, Bohm et al. These interpretations reject the account given in purely probabilistic terms and which deems individual quantum events to be acausal and not amenable to any analysis in space-time terms. As is well known, Einstein and others also rejected the purely statistical account of quantum mechanics. As stressed by Professor Vigier at the symposium, the current experimental situation now allows for the first time for individual quantum events to be studied, e. g.
This book provides the reader with the mathematical framework required to fully explore the potential of small quantum information processing devices. As decoherence will continue to limit their size, it is essential to master the conceptual tools which make such investigations possible. A strong emphasis is given to information measures that are essential for the study of devices of finite size, including Rényi entropies and smooth entropies. The presentation is self-contained and includes rigorous and concise proofs of the most important properties of these measures. The first chapters will introduce the formalism of quantum mechanics, with particular emphasis on norms and metrics for quantum states. This is necessary to explore quantum generalizations of Rényi divergence and conditional entropy, information measures that lie at the core of information theory. The smooth entropy framework is discussed next and provides a natural means to lift many arguments from information theory to the quantum setting. Finally selected applications of the theory to statistics and cryptography are discussed. The book is aimed at graduate students in Physics and Information Theory. Mathematical fluency is necessary, but no prior knowledge of quantum theory is required.
These seven lectures are intended to serve as an introduction for beginning graduate students to the spectra of small molecules. The author succeeds in illustrating the concepts by using language and metaphors that capture and elegantly convey simple insights into dynamics that lie beyond archival molecular constants. The lectures can simultaneously be viewed as a collection of interlocking special topics that have fascinated the author and his students over the years. Though neither a textbook nor a scholarly monograph, the book provides an illuminating perspective that will benefit students and researchers alike.
Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.* A comprehensive course that combines theory and practice* Includes a systematic and comprehensive description for key laser types* Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy
Originally published in 1993, this book is a largely nonmathematical account of some of the strange behaviour exhibited by moving particles, fluids and waves.
'This is about gob-smacking science at the far end of reason ... Take it nice and easy and savour the experience of your mind being blown without recourse to hallucinogens' Nicholas Lezard, Guardian For most people, quantum theory is a byword for mysterious, impenetrable science. And yet for many years it was equally baffling for scientists themselves. In this magisterial book, Manjit Kumar gives a dramatic and superbly-written history of this fundamental scientific revolution, and the divisive debate at its core. Quantum theory looks at the very building blocks of our world, the particles and processes without which it could not exist. Yet for 60 years most physicists believed that quantum theory denied the very existence of reality itself. In this tour de force of science history, Manjit Kumar shows how the golden age of physics ignited the greatest intellectual debate of the twentieth century. Quantum theory is weird. In 1905, Albert Einstein suggested that light was a particle, not a wave, defying a century of experiments. Werner Heisenberg's uncertainty principle and Erwin Schrodinger's famous dead-and-alive cat are similarly strange. As Niels Bohr said, if you weren't shocked by quantum theory, you didn't really understand it. While "Quantum" sets the science in the context of the great upheavals of the modern age, Kumar's centrepiece is the conflict between Einstein and Bohr over the nature of reality and the soul of science. 'Bohr brainwashed a whole generation of physicists into believing that the problem had been solved', lamented the Nobel Prize-winning physicist Murray Gell-Mann. But in "Quantum", Kumar brings Einstein back to the centre of the quantum debate. "Quantum" is the essential read for anyone fascinated by this complex and thrilling story and by the band of brilliant men at its heart.
Novel coherent light sources such as x-ray free-electron lasers open exciting prospects for the interaction of light with nuclei. The thesis "Coherent Control of Nuclei and X-rays" covers this still-developing field and proposes, in a daring attempt to revolutionize nuclear physics, three innovative schemes for taming nuclei using coherent effects. The theoretical explorations, which address control of nuclear quantum states, a nuclear memory for single photons in future photonic circuits, and optimized concepts for a nuclear clock, make use of new approaches at the borderline between nuclear physics and quantum dynamics. The result is a well written work, impressive in its stimulating style and promising ideas.