Download Free The Properties And Microstructure Of Neutron Irradiated Oxide Dispersion Strengthened Copper Alloys Book in PDF and EPUB Free Download. You can read online The Properties And Microstructure Of Neutron Irradiated Oxide Dispersion Strengthened Copper Alloys and write the review.

Dispersion-strengthened copper alloys have shown promise for certain high heat flux applications in both near-term and long-term fusion devices. This study examines mechanical properties changes and microstructural evolution in several oxide dispersion-strengthened alloys which were subjected to high levels of irradiation-induced displacement damage. Irradiations were carried out in the fast flux test facility (FFTF) to 34 and 50 dpa at 411 to 414°C and 32dpa at 529°C.
Various oxide-dispersion-strengthened copper alloys have been irradiated to 150 dpa at 415°C in the Fast Flux Test Facility (FFTF). The Al2O3-strengthened GlidCopTM alloys, followed closely by a HfO2-strengthened alloy, displayed the best swelling resistance, electrical conductivity, and tensile properties. The conductivity of the HfO2-strengthened alloy reached a plateau at the higher levels of irradiation, instead of exhibiting the steady decrease in conductivity observed in the other alloys. A high initial oxygen content resulted in significantly higher swelling for a series of castable oxide-dispersion-strengthened alloys, while a Cr2O3-strengthened alloy showed poor resistance to radiation.
The effect of helium production during neutron irradiation on the high temperature tensile properties of copper and dispersion strengthened (DS) copper alloys was investigated in neutron-irradiated specimens containing different levels of boron. Sheet tensile specimens were irradiated at temperatures of 90°C, 150°C and 300°C to doses of 0.2-1 dpa. Considerable embrittlement (
High strength, high conductivity copper alloys are prime candidates for high heat flux applications in fusion energy systems. This chapter reviews the physical and mechanical properties of pure copper and copper alloys with the focus on precipitation-hardened CuCrZr and dispersion-strengthened CuAl25 alloys. The effect of neutron irradiation on copper and copper alloys is reviewed in terms of radiation effects on physical properties and mechanical properties (tensile properties, fracture toughness, fatigue and creep-fatigue), irradiation creep and void swelling. The effect of irradiation on the microstructure of copper and copper alloys and dislocation channeling is also presented. Joining techniques for copper alloys in fusion plasma facing components are briefly discussed.