Download Free The Principles Of Ion Selective Electrodes And Of Membrane Transport Book in PDF and EPUB Free Download. You can read online The Principles Of Ion Selective Electrodes And Of Membrane Transport and write the review.

The Principles of Ion Selective Electrodes and of Membrane Transport is a collection of research works on the theory, principles, and fundamentals of ion-selective electrodes and of membrane transport. This book is organized into two parts encompassing 15 chapters that highlight the application of the membrane model. Part A is a general discussion of membrane potentials and membrane transport. This part describes the formulations of the interfacial potential contribution due to phase boundaries. This part also explores the diffusion potential, the nonideality of diffusion layers or membrane phases, the liquid-junction potential arising in conventional potentiometric measuring cells. Other topics covered in this part include the practical solution for the membrane potential; the ion-transport and the electrical properties of bulk membranes; and the characteristics of lipid bilayer membranes. Part B considers the fundamentals of ion-selective electrodes. This part begins with discussions of the principles, response behavior, ion selectivity, and detection limits of solid-state membrane electrodes. This part also examines several important extensions and modifications of the Sandblom-Eisenman-Walker theory; the characteristics of neutral carrier membrane electrodes; and the theory of glass electrodes.
This volume presents recent developments and the state-of-the-art of ion-selective electrodes, taken from discussions and papers presented at the 5th Symposium, held at Matrafured in Hungary. Contains 44 papers.
Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)
Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing ISEs are outlined, and the transfer of methods into routine analysis is considered. Advanced students, researchers, and practitioners will benefit from this expedient introduction.
Membrane Electrodes considers the significant developments in the field of sensing probes, with an emphasis on membrane electrodes. This book is organized into three parts encompassing 11 chapters. Part I is an introduction to the variety of ion-selective membrane electrodes that have been constructed and with which experiments have been conducted. This part deals first with the thermodynamic principles and other concepts underlying the description of the behavior of electrolyte solutions, followed by a discussion on the various theories of membrane potential applicable to a variety of solid and liquid membrane electrodes. Part II describes the preparation, properties, and uses of the various solid and liquid membrane electrodes. Part III presents glass membrane electrodes as a prelude to the description of other membrane systems in which glass electrodes are invariably used as the primary sensing device. This book will prove useful to students, technologists, and researchers in various fields of science and technology.
The critically acclaimed guide to the principles, techniques, and instruments of electroanalytical chemistry-now expanded and revised Joseph Wang, internationally renowned authority on electroanalytical techniques, thoroughly revises his acclaimed book to reflect the rapid growth the field has experienced in recent years. He substantially expands the theoretical discussion while providing comprehensive coverage of the latest advances through late 1999, introducing such exciting new topics as self-assembled monolayers, DNA biosensors, lab-on-a-chip, detection for capillary electrophoresis, single molecule detection, and sol-gel surface modification. Along with numerous references from the current literature and new worked-out examples, Analytical Electrochemistry, Second Edition offers clear, reader-friendly explanations of the fundamental principles of electrochemical processes as well as important insight into the potential of electroanalysis for problem solving in a wide range of fields, from clinical diagnostics to environmental science. Key topics include: The basics of electrode reactions and the structure of the interfacial region Tools for elucidating electrode reactions and high-resolution surface characterization An overview of finite-current controlled potential techniques Electrochemical instrumentation and electrode materials Principles of potentiometric measurements and ion-selective electrodes Chemical sensors, including biosensors, gas sensors, solid-state devices, and sensor arrays
We continue in this second volume the plan evident in the first; i.e., of presenting a number of well-rounded up-to-date reviews of important developments in the exciting field of ion-selective electrodes in analytical chemistry. In this volume, in addition to the exciting applications of ISE'S to biochemistry systems represented by the description of enzyme electrodes, there is featured the most recent development in ISE'S, namely, the joining of the electrochemical and solid state expertise, resulting in CHEMFETS. The scholarly survey of the current status of ISE'S will undoubtedly be welcomed by all workers in the field. Tucson, Arizona Henry Freiser vii Contents Chapter 1 Potentiometric Enzyme Methods Robert K. Kobos 1. Introduction . . . . . . 1 2. Soluble Enzyme Systems . . . 5 2.1. Substrate Determinations 5 2.2. Enzyme Determinations . 13 2.3. Inhibitor Determinations. 18 3. Immobilized Enzyme Systems . 19 3.1. Methods of Immobilization. 19 3.2. Characteristics of Immobilized Enzymes 23 3.3. Analytical Applications with Ion-Selective Electrodes 23 4. Enzyme Electrodes 31 4.1. Urea Electrodes 35 4.2. Amygdalin Electrodes 39 4.3. Glucose Electrodes . 40 4.4. Penicillin Electrodes 40 4.5. Amino Acid Electrodes 41 4.6. Nucleotide Electrodes 46 4.7. Uric Acid Electrode 47 4.8. Creatinine Electrode 48 48 4.9. Acetylcholine Electrodes. 4.10. D-Gluconate Electrode 49 4.11. Lactate Electrode 49 4.12. Inhibitor Determination 50 4.13. Substrate Electrodes 50 4.14. Current Trends . . . .
A one-of-a-kind book discussing drug-membrane sensors in pharmaceutical analysis Pharmaceutical Applications of Membrane Sensors is the first book to deal with the theory of drug-membrane sensors, as well as applications of such devices in pharmaceutical analysis. The book contains three main parts. The three major sections of the book cover the design and principles of membrane drug sensors, the use of membrane sensors in the analysis of pharmaceuticals, and various aspects of drug release monitoring by membrane sensors. Detailed analytical methods for more than 400 organic pharmaceuticals assayed by membrane sensor techniques are presented. Pharmaceutical Applications of Membrane Sensors will be a valuable reference for specialists in analytical and pharmaceutical chemistry, electroanalytical chemistry, medicine, pharmaceutical sciences, and pharmacology.
It is now time for a comprehensive treatise to look at the whole field of electrochemistry. The present treatise was conceived in 1974, and the earliest invitations to authors for contributions were made in 1975. The completion of the early volumes has been delayed by various factors. There has been no attempt to make each article emphasize the most recent situation at the expense of an overall statement of the modern view. This treatise is not a collection of articles from Recent Advances in Electrochemistry or Modern Aspects of Electrochemistry. It is an attempt at making a mature statement about the present position in the vast area of what is best looked at as a new interdisciplinary field. Texas A & M University J. O'M. Bockris University of Ottawa B. E. Conway Case Western Reserve University Ernest Yeager Texas A & M University Ralph E. White Preface to Volume 8 Experimental methods in electrochemistry are becoming more diverse. This volume describes many of the new techniques that are being used as well as some of the well-established techniques. It begins with two chapters (1 and 2) on electronic instrumentation and methods for utilization of microcomputers for experimental data acquisition and reduction. Next, two chapters (3 and 4) on classical methods of electrochemical analysis are presented: ion selective electrodes and polarography.
Implantable sensing, whether used for transient or long-term monitoring of in vivo physiological, bio-electrical, bio-chemical and metabolic changes, is a rapidly advancing field of research and development. Underpinned by increasingly small, smart and energy efficient designs, they become an integral part of surgical prostheses or implants for both acute and chronic conditions, supporting optimised, context aware sensing, feedback, or stimulation with due consideration of system level impact. From sensor design, fabrication, on-node processing with application specific integrated circuits, to power optimisation, wireless data paths and security, this book provides a detailed explanation of both the theories and practical considerations of developing novel implantable sensors. Other topics covered by the book include sensor embodiment and flexible electronics, implantable optical sensors and power harvesting. Implantable Sensors and Systems – from Theory to Practice is an important reference for those working in the field of medical devices. The structure of the book is carefully prepared so that it can also be used as an introductory reference for those about to enter into this exciting research and developing field.