Download Free The Principles Of Economic Geology Book in PDF and EPUB Free Download. You can read online The Principles Of Economic Geology and write the review.

Humanity’s ever-increasing hunger for mineral raw materials, caused by a growing global population and ever increasing standards of living, has resulted in economic geology becoming a subject of urgent importance. This book provides a broad panorama of mineral deposits, covering their origin and geological characteristics, the principles of the search for ores and minerals, and the investigation of newly found deposits. Practical and environmental issues that arise during the life cycle of a mine and after its closure are addressed, with an emphasis on sustainable and "green" mining. The central scientific theme of the book is to place the extraordinary variability of mineral deposits in the frame of fundamental geological processes. The book is written for earth science students and practicing geologists worldwide. Professionals in administration, resource development, mining, mine reclamation, metallurgy, and mineral economics will also find the text valuable. Economic Geology is a fully revised translation of the the fifth edition of the German language text Mineralische und Energie-Rohstoffe. Additional resources for this book can be found at: www.wiley.com/go/pohl/geology. The author's website can be found at: http://www.walter-pohl.com.
Developments in Economic Geology, 5: Principles of Induced Polarization for Geophysical Exploration focuses on the principles, methodologies, and approaches involved in induced polarization (IP), including anisotropism, electromagnetic coupling, and electrical circuits. The book first takes a look at resistivity principles, theory of IP, and laboratory work in IP. Concerns cover electrical measurements of rocks, anisotropism, early part of decay curve and the comparison with frequency effects, electrical models of induced polarization, electrical polarization, resistivities of earth materials, and resistivity exploration methods. The manuscript then elaborates on IP field equipment, telluric noise and electromagnetic coupling, IP field surveying, and drill-hole and underground surveying and the negative IP effect. Discussions focus on differences between surface and subsurface methods, current-sending system in the field, telluric (earth) currents, electromagnetic coupling, design considerations, coupling of electrical circuits, design considerations, and signal-generating system. The manuscript ponders on the complex-resistivity method and interpretation of induced-polarization data, including grade estimation of mineralization using the IP method, complex-resistivity survey, signal detection capabilities of the complex-resistivity method, and disadvantages of the complex-resistivity method. The text is a valuable source of information for researchers wanting to study induced polarization.
Introduction to Ore-Forming Processes is the first senior undergraduate – postgraduate textbook to focus specifically on the multiplicity of geological processes that result in the formation of mineral deposits. Opens with an overview of magmatic ore-forming processes Moves systematically through hydrothermal and sedimentary metallogenic environments, covering as it does the entire gamut of mineral deposit types, including the fossil fuels and supergene ores The final chapter relates metallogeny to global tectonics by examining the distribution of mineral deposits in space and time Boxed examples of world famous ore deposits are featured throughout providing context and relevance to the process-oriented descriptions of ore genesis Brings the discipline of economic geology back into the realm of conventional mainstream earth science by emphasizing the fact that mineral deposits are simply one of the many natural wonders of geological process and evolution. Artwork from the book is available to instructors at www.blackwellpublishing.com/robb.
Mineral Exploration: Principles and Applications, Second Edition, presents an interdisciplinary approach on the full scope of mineral exploration. Everything from grass root discovery, objective base sequential exploration, mining, beneficiation, extraction, economic evaluation, policies and acts, rules and regulations, sustainability, and environmental impacts is covered. Each topic is presented using theoretical approaches that are followed by specific applications that can be used in the field. This new edition features updated references, changes to rules and regulations, and new sections on oil and gas exploration and classification, air-core drilling, and smelting and refining techniques. This book is a key resource for both academics and professionals, offering both practical and applied knowledge in mineral exploration. Offers important updates to the previous edition, including sections on the cyclical nature of mineral industry, exploration for oil and gas, CHIM-electro-geochemical survey, air-core drilling, classification of oil and gas resources, smelting, and refining technologies Presents global case studies that allow readers to quickly apply exploration concepts to real-world scenarios Includes 385 illustrations and photographs to aid the reader in understanding key procedures and applications
This book provides a detailed overview of the operational principles of modern mining geology, which are presented as a good mix of theory and practice, allowing use by a broad range of specialists, from students to lecturers and experienced geologists. The book includes comprehensive descriptions of mining geology techniques, including conventional methods and new approaches. The attributes presented in the book can be used as a reference and as a guide by mining industry specialists developing mining projects and for optimizing mining geology procedures. Applications of the methods are explained using case studies and are facilitated by the computer scripts added to the book as Electronic Supplementary Material.
Nonrenewable natural resources – metallic and non-metallic minerals, industrial rocks and energy resources (both organic and inorganic), have been treated in a holistic manner in this book, including two important resources (soil and water), not commonly covered in most books on this topic. For the uninitiated reader, an introductory chapter looks into some basic definitions as well as nature and characteristics of mineral deposits followed by a chapter on the different crustal processes that produce the various ore deposits in the endogenous and exogenous environments. The strength of the book lies in its critical treatment of the genetic processes of the mineral deposits, their classification and the geodynamic context of metallogeny, and coverage of sustainable development of mineral deposits with special reference to various socio-economic as well as regulatory and environmental issues that face the Indian mining industry today. The text is punctuated with examples of Indian deposits, balanced with classical deposits around the world, to cater to the interests of Indian students and the international readership. This is a book for advanced undergraduate and post-graduate students of Geology, Environmental Sciences and Natural Resource Management.
Mineral deposits have supplied useful or valuable material for human consumption long before they became objects of scientific curiosity or commercial exploitation. In fact, the earliest human interest in rocks was probably because of the easily accessible, useful (e. g. , red pigment in the form of earthy hematite) or valuable (e. g. , native gold and gemstones) materials they contained at places. In modem times, the study of mineral deposits has evolved into an applied science employing detailed field observations, sophisticated laboratory techniques for additional information, and computer modeling to build complex hypotheses. Understanding concepts that would someday help geologists to find new mineral deposits or exploit the known ones more efficiently have always been, and will continue to be, at the core of any course on mineral deposits, but it is a fascinating subject in its own right, even for students who do not intend to be professional economic geologists. I believe that a course on mineral deposits should be designed as a "capstone course" that illustrates a comprehensive application of concepts from many other disciplines in geology (mineralogy, stratigraphy and sedimentation, structure and tectonics, petrology, geochemistry, paleontology, geomorphology, etc. ). This book is intended as a text for such an introductory course in economic geology, primarily for senior undergraduate and graduate students in colleges and universities. It should also serve as a useful information resource for professional economic geologists.
'Engineering geology' is one of those terms that invite definition. The American Geological Institute, for example, has expanded the term to mean 'the application of the geological sciences to engineering practice for the purpose of assuring that the geological factors affecting the location, design, construction, operation and mainten ance of engineering works are recognized and adequately provided for'. It has also been defined by W. R. Judd in the McGraw-Hill Encyclopaedia of Science and Technology as 'the application of education and experience in geology and other geosciences to solve geological problems posed by civil engineering structures'. Judd goes on to specify those branches of the geological or geo-sciences as surface (or surficial) geology, structural/fabric geology, geohydro logy, geophysics, soil and rock mechanics. Soil mechanics is firmly included as a geological science in spite of the perhaps rather unfortunate trends over the years (now happily being reversed) towards purely mechanistic analyses which may well provide acceptable solutions for only the simplest geology. Many subjects evolve through their subject areas from an interdisciplinary background and it is just such instances that pose the greatest difficulties of definition. Since the form of educational development experienced by the practitioners of the subject ulti mately bears quite strongly upon the corporate concept of the term 'engineering geology', it is useful briefly to consider that educational background.