Download Free The Principle Of The Identity Of Indiscernible Pii Determinism And Locality Book in PDF and EPUB Free Download. You can read online The Principle Of The Identity Of Indiscernible Pii Determinism And Locality and write the review.

At what point does theory depart the realm of testable hypothesis and come to resemble something like aesthetic speculation, or even theology? The legendary physicist Wolfgang Pauli had a phrase for such ideas: He would describe them as "not even wrong," meaning that they were so incomplete that they could not even be used to make predictions to compare with observations to see whether they were wrong or not. In Peter Woit's view, superstring theory is just such an idea. In Not Even Wrong , he shows that what many physicists call superstring "theory" is not a theory at all. It makes no predictions, even wrong ones, and this very lack of falsifiability is what has allowed the subject to survive and flourish. Not Even Wrong explains why the mathematical conditions for progress in physics are entirely absent from superstring theory today and shows that judgments about scientific statements, which should be based on the logical consistency of argument and experimental evidence, are instead based on the eminence of those claiming to know the truth. In the face of many books from enthusiasts for string theory, this book presents the other side of the story.
Examines the place and role of the identity of indisernibles, which rules out numerically distinct but perfectly similar things, in Leibniz's philosophy.
"This book contains a concise introduction to one of the most fundamental branches of philosophy, which deals with reality and its nature. Among the topics discussed are such metaphysical questions as 'Are we fundamentally free?', 'Does time really pass?', 'Are there any abstract objects?', 'What is causation?', 'What are necessary and possible truths?'. The book is aimed at absolute novices with no previous knowledge of philosophy. For those who would like to pursue the subject a bit deeper, the book comes equipped with an extend list of further reading."-- Back cover.
This book provides a thorough and up-to-date introduction to the philosophy of quantum physics. Although quantum theory is renowned for its spectacular empirical successes, controversial discussion about how it should be understood continue to rage today. In this volume, the authors provide an overview of its numerous philosophical challenges: Do quantum objects violate the principle of causality? Are particles of the same type indistinguishable and therefore not individual entities? Do quantum objects retain their identity over time? How does a compound quantum system relate to its parts? These questions are answered here within different interpretational approaches to quantum theory. Finally, moving to Quantum Field Theory, we find that the problem of non-locality is exacerbated. Philosophy of quantum physics is aimed at philosophers with an interest in physics, while also serving to familiarize physicists with many of the essential philosophical questions of their subject.
The Principle of Sufficient Reason (PSR) says that all contingent facts must have explanation. In this 2006 volume, which was the first on the topic in the English language in nearly half a century, Alexander Pruss examines the substantive philosophical issues raised by the Principle Reason. Discussing various forms of the PSR and selected historical episodes, from Parmenides, Leibnez, and Hume, Pruss defends the claim that every true contingent proposition must have an explanation against major objections, including Hume's imaginability argument and Peter van Inwagen's argument that the PSR entails modal fatalism. Pruss also provides a number of positive arguments for the PSR, based on considerations as different as the metaphysics of existence, counterfactuals and modality, negative explanations, and the everyday applicability of the PSR. Moreover, Pruss shows how the PSR would advance the discussion in a number of disparate fields, including meta-ethics and the philosophy of mathematics.
A daring new vision of the quantum universe, and the scandals controversies, and questions that may illuminate our future--from Canada's leading mind on contemporary physics. Quantum physics is the golden child of modern science. It is the basis of our understanding of atoms, radiation, and so much else, from elementary particles and basic forces to the behaviour of materials. But for a century it has also been the problem child of science, plagued by intense disagreements between its intellectual giants, from Albert Einstein to Stephen Hawking, over the strange paradoxes and implications that seem like the stuff of fantasy. Whether it's Schrödinger's cat--a creature that is simultaneously dead and alive--or a belief that the world does not exist independently of our observations of it, quantum theory is what challenges our fundamental assumptions about our reality. In Einstein's Unfinished Revolution, globally renowned theoretical physicist Lee Smolin provocatively argues that the problems which have bedeviled quantum physics since its inception are unsolved for the simple reason that the theory is incomplete. There is more, waiting to be discovered. Our task--if we are to have simple answers to our simple questions about the universe we live in--must be to go beyond it to a description of the world on an atomic scale that makes sense. In this vibrant and accessible book, Smolin takes us on a journey through the basics of quantum physics, introducing the stories of the experiments and figures that have transformed the field, before wrestling with the puzzles and conundrums that they present. Along the way, he illuminates the existing theories about the quantum world that might solve these problems, guiding us toward his own vision that embraces common sense realism. If we are to have any hope of completing the revolution that Einstein began nearly a century ago, we must go beyond quantum mechanics as we know it to find a theory that will give us a complete description of nature. In Einstein's Unfinished Revolution, Lee Smolin brings us a step closer to resolving one of the greatest scientific controversies of our age.
This Oxford Handbook provides an overview of many of the topics that currently engage philosophers of physics. It surveys new issues and the problems that have become a focus of attention in recent years. It also provides up-to-date discussions of the still very important problems that dominated the field in the past. In the late 20th Century, the philosophy of physics was largely focused on orthodox Quantum Mechanics and Relativity Theory. The measurement problem, the question of the possibility of hidden variables, and the nature of quantum locality dominated the literature on the quantum mechanics, whereas questions about relationalism vs. substantivalism, and issues about underdetermination of theories dominated the literature on spacetime. These issues still receive considerable attention from philosophers, but many have shifted their attentions to other questions related to quantum mechanics and to spacetime theories. Quantum field theory has become a major focus, particularly from the point of view of algebraic foundations. Concurrent with these trends, there has been a focus on understanding gauge invariance and symmetries. The philosophy of physics has evolved even further in recent years with attention being paid to theories that, for the most part, were largely ignored in the past. For example, the relationship between thermodynamics and statistical mechanics—-once thought to be a paradigm instance of unproblematic theory reduction—-is now a hotly debated topic. The implicit, and sometimes explicit, reductionist methodology of both philosophers and physicists has been severely criticized and attention has now turned to the explanatory and descriptive roles of "non-fundamental,'' phenomenological theories. This shift of attention includes "old'' theories such as classical mechanics, once deemed to be of little philosophical interest. Furthermore, some philosophers have become more interested in "less fundamental'' contemporary physics such as condensed matter theory. Questions abound with implications for the nature of models, idealizations, and explanation in physics. This Handbook showcases all these aspects of this complex and dynamic discipline.
Does the future exist already? What is space? Are time machines physically possible? What is quantum mechanical reality like? Are there many universes? Is there a ‘true’ geometry of the universe? Why does there appear to be an arrow of time? Do humans play a special role in the world? In this unique introductory book, Dean Rickles guides the reader through these and other core questions that keep philosophers of physics up at night. He discusses the three pillars of modern physics (quantum mechanics, statistical mechanics, and the theories of relativity), in addition to more cutting-edge themes such as econophysics, quantum gravity, quantum computers, and gauge theories. The book’s approach is based on the idea that philosophy of physics is a kind of ‘interpretation game’ in which we try to map physical theories onto our world. But the rules of this game often lead to a multiplicity of possible victors: rarely do we encounter a simple answer. The Philosophy of Physics offers a highly accessible introduction to the latest developments in this exciting field. Written in a lively style, with many visual examples, it will appeal to beginner-level students in both physics and philosophy.
Paperback version of the 2002 paper published in the journal Progress in Information, Complexity, and Design (PCID). ABSTRACT Inasmuch as science is observational or perceptual in nature, the goal of providing a scientific model and mechanism for the evolution of complex systems ultimately requires a supporting theory of reality of which perception itself is the model (or theory-to-universe mapping). Where information is the abstract currency of perception, such a theory must incorporate the theory of information while extending the information concept to incorporate reflexive self-processing in order to achieve an intrinsic (self-contained) description of reality. This extension is associated with a limiting formulation of model theory identifying mental and physical reality, resulting in a reflexively self-generating, self-modeling theory of reality identical to its universe on the syntactic level. By the nature of its derivation, this theory, the Cognitive Theoretic Model of the Universe or CTMU, can be regarded as a supertautological reality-theoretic extension of logic. Uniting the theory of reality with an advanced form of computational language theory, the CTMU describes reality as a Self Configuring Self-Processing Language or SCSPL, a reflexive intrinsic language characterized not only by self-reference and recursive self-definition, but full self-configuration and self-execution (reflexive read-write functionality). SCSPL reality embodies a dual-aspect monism consisting of infocognition, self-transducing information residing in self-recognizing SCSPL elements called syntactic operators. The CTMU identifies itself with the structure of these operators and thus with the distributive syntax of its self-modeling SCSPL universe, including the reflexive grammar by which the universe refines itself from unbound telesis or UBT, a primordial realm of infocognitive potential free of informational constraint. Under the guidance of a limiting (intrinsic) form of anthropic principle called the Telic Principle, SCSPL evolves by telic recursion, jointly configuring syntax and state while maximizing a generalized self-selection parameter and adjusting on the fly to freely-changing internal conditions. SCSPL relates space, time and object by means of conspansive duality and conspansion, an SCSPL-grammatical process featuring an alternation between dual phases of existence associated with design and actualization and related to the familiar wave-particle duality of quantum mechanics. By distributing the design phase of reality over the actualization phase, conspansive spacetime also provides a distributed mechanism for Intelligent Design, adjoining to the restrictive principle of natural selection a basic means of generating information and complexity. Addressing physical evolution on not only the biological but cosmic level, the CTMU addresses the most evident deficiencies and paradoxes associated with conventional discrete and continuum models of reality, including temporal directionality and accelerating cosmic expansion, while preserving virtually all of the major benefits of current scientific and mathematical paradigms.
This collection traces the history of psycho-analytically informed thinking about dreams, using selected contributions from Freud to the present to highlight both the legacy of The Interpretation of dreams and the evolving use of the dream as a research tool- of the mind first, later of the psychoanalytic process and of pathology and loge predicaments, and finally as a tool to be integrated with other methods of investigation.