Download Free The Preparation Of Science And Mathematics Teachers For Ict Use Book in PDF and EPUB Free Download. You can read online The Preparation Of Science And Mathematics Teachers For Ict Use and write the review.

Master's Thesis from the year 2011 in the subject Didactics - Computer Science, University of Twente (Behavioural Science), course: ICT in science and mathematics - Educational Science and Technology, language: English, abstract: This study investigated the ways through which pre-service science and mathematics teachers at Dar es Salaam University College of Education (DUCE) can acquire competencies for integrating technology pedagogy and content in teaching. Specifically the study investigated the preservice teachers’ ICT integration competencies; practices that can be effective in enhancing pre-service science and mathematics teachers’ competency in integrating technology, pedagogy and content; as well as the impact of those practices in the development of preservice teachers’ technological pedagogical content knowledge. An action research approach was employed in the study, employing the pre and post-intervention assessment of preservice teachers’ knowledge on technology, pedagogy and content. Planed interventions were carried out during the study, to enable preservice teachers to identify areas of weaknesses in their technology integration competencies, and propose alternative approaches for addressing the identified weaknesses. Student questionnaire, instructor interview and observation checklist were used to collect date before, during and after intervention. Researcher’s log book, digital camera and audio recorder were used in recording events and activities taking place during the study. Findings revealed that when preservice teachers engage in hands on activities such as microteaching, lesson design and the opportunity to share their ideas with peers, they easily developed their technological pedagogical content knowledge. An analysis of knowledge change after the intervention, showed a significant difference between pre-intervention and post intervention preservice teachers’ knowledge of TPACK. It is therefore concluded that, the adoption of hands on activities that uses technology and involve teachers in planning of what to teach, how to teach and with what technology to teach, and provision of an opportunity to share this plan with colleagues, can make a significant change in the development of TPACK among preservice teachers.
Master's Thesis from the year 2011 in the subject Computer Science - Didactics, University of Twente (Behavioural Science), course: ICT in science and mathematics - Educational Science and Technology, language: English, abstract: This study investigated the ways through which pre-service science and mathematics teachers at Dar es Salaam University College of Education (DUCE) can acquire competencies for integrating technology pedagogy and content in teaching. Specifically the study investigated the preservice teachers' ICT integration competencies; practices that can be effective in enhancing pre-service science and mathematics teachers' competency in integrating technology, pedagogy and content; as well as the impact of those practices in the development of preservice teachers' technological pedagogical content knowledge. An action research approach was employed in the study, employing the pre and post-intervention assessment of preservice teachers' knowledge on technology, pedagogy and content. Planed interventions were carried out during the study, to enable preservice teachers to identify areas of weaknesses in their technology integration competencies, and propose alternative approaches for addressing the identified weaknesses. Student questionnaire, instructor interview and observation checklist were used to collect date before, during and after intervention. Researcher's log book, digital camera and audio recorder were used in recording events and activities taking place during the study. Findings revealed that when preservice teachers engage in hands on activities such as microteaching, lesson design and the opportunity to share their ideas with peers, they easily developed their technological pedagogical content knowledge. An analysis of knowledge change after the intervention, showed a significant difference between pre-intervention and post intervention preservice teachers' knowledge of TPACK. It is therefore concluded that, the adoption of hands on ac
The study revealed the need for an intervention strategy in order to expand opportunities for both teachers and trainers to develop the capacity to integrate ICT in their teaching. This includes, acquisition of a generator to supplement hydro-electric power and additional ICT facilities, formulation of a policy for access to the facilities to increase the opportunity for teachers to interact with, and therefore learn about ICT usage. Additionally, there is need to develop and implement a detailed ICT integration action plan that is aligned with the national ICT integration framework, detailing out essential learning activities and the professional and technical resources. Finally, formulate a set of ICT competency standards to describe the trainers and teachers expertise and encourage both the teachers and trainers to take the initiative to acquire a personal laptop and modem and purpose to improve on ICT integration skills, by taking advantage of the many training opportunities for ICT-pedagogy integration available freely online
This book deals with access to participation in education as a potential to construct inclusiveness and equality.
Research Paper (undergraduate) from the year 2010 in the subject Pedagogy - The Teacher, Educational Leadership, University of Twente , course: Education science, language: English, abstract: This article is focused on unveiling the concept of TPACK in relation to teaching and learning in science and mathematics as well as the meaning of TPACK for pre-service science and mathematics teachers training. In describing this, different literatures were consulted on the meaning of TPACK, its origin and the way it can be integrated in pre-service science and mathematics teacher preparation. It was noted from literature that TPACK is the core of good teaching with technology, and that it’s important for teachers to have an understanding of TPACK. Studies further show that the way pre-service teachers are taught to integrate technology, pedagogy and content is the same way they can implement the approach in their own teaching. In addition, studies argue for pre-service teachers to learn on how technology can help to enhance students learning in science and mathematics rather than learning how to teach technology. Different frameworks have been proposed on how to shift from teaching technology to using technology to enhance learning. For example some studies provide the curricular plans for developing pre-service teachers’ competencies of integrating technology pedagogy and content. To enhance pre-service teachers’ competency in technology integrations, some studies have reported the need for pre-service science and mathematics teachers to engage in the hands-on activities that reflect the real teaching with technology. Example of hands activities proposed in most studies includes planning of a lesson, presenting it to peers, getting critics from peers and re-planning it again. The cyclic development of the lesson is reported to enhance pre-service teachers’ competency in working with technology in a real classroom situation. It is therefore concluded that implementation of TPACK in pre-service teachers training should start with orientation of the pre-service teachers to the use of technology in teaching by providing them with sufficient opportunity to engage in hands-on activities.
This study investigated the ways through which pre-service science and mathematics teachers at Dar es Salaam University College of Education (DUCE) can acquire competencies for integrating technology pedagogy and content in teaching. Specifically the study investigated the preservice teachers' ICT integration competencies; practices that can be effective in enhancing pre-service science and mathematics teachers' competency in integrating technology, pedagogy and content; as well as the impact of those practices in the development of preservice teachers' technological pedagogical content knowledge. An action research approach was employed in the study, employing the pre and post-intervention assessment of preservice teachers' knowledge on technology, pedagogy and content. Planned interventions were carried out during the study, to enable preservice teachers to identify areas of weaknesses in their technology integration competencies, and propose alternative approaches for addressing the identified weaknesses. Student questionnaire, instructor interview and observation checklist were used to collect date before, during and after intervention. Researcher's log book, digital camera and audio recorder were used in recording events and activities taking place during the study. Findings revealed that when preservice teachers engage in hands on activities such as microteaching, lesson design and the opportunity to share their ideas with peers, they easily developed their technological pedagogical content knowledge. An analysis of knowledge change after the intervention, showed a significant difference between pre-intervention and post intervention preservice teachers' knowledge of TPACK [technological pedagogical content knowledge]. It is therefore concluded that, the adoption of hands on activities that uses technology and involve teachers in planning of what to teach, how to teach and with what technology to teach, and provision of an opportunity to share this plan with colleagues, can make a significant change in the development of TPACK among preservice teachers. Appended are: (1) Students' questionnaire; (2) Interview Questions for DUCE Instructors; (3) TPACK observation checklist (microteaching and classroom activities); and (4) Worksheet for Simple Pendulum. (Contains 26 tables.).
This article is focused on unveiling the concept of TPACK in relation to teaching and learning in science and mathematics as well as the meaning of TPACK for pre-service science and mathematics teachers training. In describing this, different literatures were consulted on the meaning of TPACK, its origin and the way it can be integrated in pre-service science and mathematics teacher preparation. It was noted from literature that TPACK is the core of good teaching with technology, and that it's important for teachers to have an understanding of TPACK. Studies further show that the way pre-service teachers are taught to integrate technology, pedagogy and content is the same way they can implement the approach in their own teaching. In addition, studies argue for pre-service teachers to learn on how technology can help to enhance students learning in science and mathematics rather than learning how to teach technology. Different frameworks have been proposed on how to shift from teaching technology to using technology to enhance learning. For example some studies provide the curricular plans for developing pre-service teachers' competencies of integrating technology pedagogy and content. To enhance pre-service teachers' competency in technology integrations, some studies have reported the need for pre-service science and mathematics teachers to engage in the hands-on activities that reflect the real teaching with technology. Example of hands activities proposed in most studies includes planning of a lesson, presenting it to peers, getting critics from peers and re-planning it again. The cyclic development of the lesson is reported to enhance pre-service teachers' competency in working with technology in a real classroom situation. It is therefore concluded that implementation of TPACK in pre-service teachers training should start with orientation of the pre-service teachers to the use of technology in teaching by providing them with sufficient opportunity to engage in hands-on activities. (Contains 3 tables and 2 figures.
Teacher preparation programs in the United States and around the world have finally begun to address this deficiency in their programs. The realization that technology is a powerful driving force in education coupled with a renewed emphasis on teacher preparation by governments have resulted in some dramatic changes in teacher preparation programs. I believe that we have just begun to see changes in teacher preparation and that the pace of change will continue to accelerate. This volume covers some of the more exciting developments in the field, including the emergence of wireless computing in the classroom and the preparation of teachers in an online environment. In short, I am optimistic. For those of you who are also in the field, I think you will agree. For those who are just entering the field, this book is a great place to start as you change education. Finally, while this book is the last book of the three part series that we at CAIT conceptualized with Charalambos Vrasidas and Gene Glass, it is also the beginning of a new relationship. We are excited to join with a new partner, CARDET, to present this book. Over many years in the education and R&D field, I have come to realize the value of partnerships and relationships. I want to thank both Charalambos and Gene for making this series a reality and such a success. We are looking forward to working with them and CARDET in the near future.
Computer science has emerged as a key driver of innovation in the 21st century. Yet preparing teachers to teach computer science or integrate computer science content into K-12 curricula remains an enormous challenge. Recent policy reports have suggested the need to prepare future teachers to teach computer science through pre-service teacher education programs. In order to prepare a generation of teachers who are capable of delivering computer science to students, however, the field must identify research-based examples, pedagogical strategies, and policies that can facilitate changes in teacher knowledge and practices. The purpose of this book is to provide examples that could help guide the design and delivery of effective teacher preparation on the teaching of computer science. This book identifies promising pathways, pedagogical strategies, and policies that will help teacher education faculty and pre-service teachers infuse computer science content into their curricula as well as teach stand-alone computing courses. Specifically, the book focuses on pedagogical practices for developing and assessing pre-service teacher knowledge of computer science, course design models for pre-service teachers, and discussion of policies that can support the teaching of computer science. The primary audience of the book is students and faculty in educational technology, educational or cognitive psychology, learning theory, teacher education, curriculum and instruction, computer science, instructional systems, and learning sciences.