Download Free The Population Explosion And Other Mathematical Puzzles Book in PDF and EPUB Free Download. You can read online The Population Explosion And Other Mathematical Puzzles and write the review.

Population Explosion and Other Mathematical Puzzles is a wonderful addition to Dr Dick Hess's previous successful books, Mental Gymnastics: Recreational Mathematical Puzzles, Golf on the Moon, (Dover Publishing, 2011 and 2014 respectively) and Number-Crunching Math Puzzles (Puzzlewright, 2013), a republication of All-Star Mathlete Puzzles (Sterling Publishing, 2009). In this latest volume, there are 116 recreational mathematical puzzles and problems that will challenge and entertain bright minds. They are mostly new problems on creative themes, encompassing a wide range of difficulty from amusing to complex. Intended to hone mathematical thinking skills and reasoning ability, solving the puzzles may require considerable perseverance.Open this book to find a captivating assortment of geometric, digital, logical, probability, analytical, physics and trapezoid puzzles. Find out what happens with jeeps in the desert and be amused or confused by some MathDice puzzles.While most of these puzzles can be solved by pencil and paper analysis, there are some that are best tackled with a computer to find a solution. Be prepared to keep your wits about you!
Research in mathematics is much more than solving puzzles, but most people will agree that solving puzzles is not just fun: it helps focus the mind and increases one's armory of techniques for doing mathematics. Mathematical Puzzles makes this connection explicit by isolating important mathematical methods, then using them to solve puzzles and prove a theorem. Features A collection of the world’s best mathematical puzzles Each chapter features a technique for solving mathematical puzzles, examples, and finally a genuine theorem of mathematics that features that technique in its proof Puzzles that are entertaining, mystifying, paradoxical, and satisfying; they are not just exercises or contest problems.
This volume brings together authors from a variety of specialties to present fascinating problems and solutions in recreational mathematics.
The year’s finest mathematical writing from around the world This annual anthology brings together the year’s finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2018 makes available to a wide audience many pieces not easily found anywhere else—and you don’t need to be a mathematician to enjoy them. These essays delve into the history, philosophy, teaching, and everyday aspects of math, offering surprising insights into its nature, meaning, and practice—and taking readers behind the scenes of today’s hottest mathematical debates. James Grime shows how to build subtly mischievous dice for playing slightly unfair games and Michael Barany traces how our appreciation of the societal importance of mathematics has developed since World War II. In other essays, Francis Su extolls the inherent values of learning, doing, and sharing mathematics, and Margaret Wertheim takes us on a mathematical exploration of the mind and the world—with glimpses at science, philosophy, music, art, and even crocheting. And there’s much, much more. In addition to presenting the year’s most memorable math writing, this must-have anthology includes an introduction by the editor and a bibliography of other notable pieces on mathematics. This is a must-read for anyone interested in where math has taken us—and where it is headed.
Presents a model for biological clocks, and covers topics in ecology and evolutionary genetics.
As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers. This book traces the history of population dynamics---a theoretical subject closely connected to genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, from Mendel's laws and the question of extinction of family names to percolation theory for the spread of epidemics, and chaotic populations, where determinism and randomness intertwine. The reader of this book will see, from a different perspective, the problems that scientists face when governments ask for reliable predictions to help control epidemics (AIDS, SARS, swine flu), manage renewable resources (fishing quotas, spread of genetically modified organisms) or anticipate demographic evolutions such as aging.
"Math and bio 2010 grew out of 'Meeting the Challenges: Education across the Biological, Mathematical and Computer Sciences,' a joint project of the Mathematical Association of America (MAA), the National Science Foundation Division of Undergraduate Education (NSF DUE), the National Institute of General Medical Sciences (NIGMS), the American Association for the Advancement of Science (AAAS), and the American Society for Microbiology (ASM)."--Foreword, p. vi
A conference on "Some Mathematical Problems in Biology" was held at the University of Victoria, Victoria, B. C. , Canada, from May 7 - 10, 1973. The participants and invited speakers were mathematicians interested in problems of a biological nature, and scientists actively engaged in developing mathematical models in biological fields. One aim of the conference was to attempt to assess what the recent rapid growth of mathematical interaction with the biosciences has accomplished and may accomplish in the near future. The conference also aimed to expose the problems of communication bet~",een mathematicians and biological scientists, and in doing so to stimulate the interchange of ideas. It was recognised that the topic spans an enormous breadth, and little attempt was made to balance the very diverse areas. Widespread active interest was shown in the conference, and just over one hundred people registered. The varied departments and institutions across North America from which the participants came made it both academically and geographically mixed. The chief activity of the conference was the presentation of papers. Nine invited guest speakers (see table of contents) each gave a one hour talk. These covered a wide range of topics. There were twenty-five shorter (twenty minute) contributed papers, and almost all papers l,rere followed by a five minute question and discussion period. Duplicated abstracts of presented papers were available at the meeting. An evening informal discussion meeting of participants, chaired by Dr. A. B. Tayler, and led by Drs. E. M. Hagmeier, E. C.
Environmental Mathematics seeks to marry the most pressing challenge of our time with the most powerful technology of our time - mathematics. This book does this at an elementary level and demonstrates a wide variety of significant environmental applications that can be explored without resorting to calculus. Environmental Mathematics in the Classroom includes several chapters accessible enough to be a text in a general education course or to enrich an elementary algebra course. Ground-level ozone, pollution and water use, preservation of whales, mathematical economics, the movement of clouds over a mountain range, at least one population model, and a smorgasbord of 'newspaper mathematics' can be studied at this level and would form a stimulating course. It would prepare future teachers not only to learn basic mathematics, but to understand how they can integrate it into other topics that will intrigue students.