Download Free The Population Dynamics Of Infectious Diseases Theory And Applications Book in PDF and EPUB Free Download. You can read online The Population Dynamics Of Infectious Diseases Theory And Applications and write the review.

Since the beginning of this century there has been a growing interest in the study of the epidemiology and population dynamics of infectious disease agents. Mathematical and statistical methods have played an important role in the development of this field and a large, and sophisticated, literature exists which is concerned with the theory of epidemiological processes in popu lations and the dynamics of epidemie and endemie disease phenomena. Much ofthis literature is, however, rather formal and abstract in character, and the field has tended to become rather detached from its empirical base. Relatively little of the literature, for example, deals with the practical issues which are of major concern to public health workers. Encouragingly, in recent years there are signs of an increased awareness amongst theoreticians of the need to confront predictions with observed epidemiological trends, and to pay elose attention to the biological details of the interaction between host and disease agent. This trend has in part been stimulated by the early work of Ross and Macdonald, on the transmission dynamics of tropical parasitic infections, but a further impetus has been the recent advances made by ecologists in blending theory and observation in the study of plant and animal populations.
An Original book with a comprehensive collection of many significant topics of the frontiers in applied presentation of many epidemic models with many real-life examples. presents an integration of interesting ideas from the well-mixed fields of statistics and mathematics. A valuable resource for researchers in wide range of disciplines to solve problems of practical interest.
This book is the first one in which basic demographic models are rigorously formulated by using modern age-structured population dynamics, extended to study real-world population problems. Age structure is a crucial factor in understanding population phenomena, and the essential ideas in demography and epidemiology cannot be understood without mathematical formulation; therefore, this book gives readers a robust mathematical introduction to human population studies. In the first part of the volume, classical demographic models such as the stable population model and its linear extensions, density-dependent nonlinear models, and pair-formation models are formulated by the McKendrick partial differential equation and are analyzed from a dynamical system point of view. In the second part, mathematical models for infectious diseases spreading at the population level are examined by using nonlinear differential equations and a renewal equation. Since an epidemic can be seen as a nonlinear renewal process of an infected population, this book will provide a natural unification point of view for demography and epidemiology. The well-known epidemic threshold principle is formulated by the basic reproduction number, which is also a most important key index in demography. The author develops a universal theory of the basic reproduction number in heterogeneous environments. By introducing the host age structure, epidemic models are developed into more realistic demographic formulations, which are essentially needed to attack urgent epidemiological control problems in the real world.
This book explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology.
The Second Autumn Course on Mathematical Ecology was held at the Intern ational Centre for Theoretical Physics in Trieste, Italy in November and December of 1986. During the four year period that had elapsed since the First Autumn Course on Mathematical Ecology, sufficient progress had been made in applied mathemat ical ecology to merit tilting the balance maintained between theoretical aspects and applications in the 1982 Course toward applications. The course format, while similar to that of the first Autumn Course on Mathematical Ecology, consequently focused upon applications of mathematical ecology. Current areas of application are almost as diverse as the spectrum covered by ecology. The topiys of this book reflect this diversity and were chosen because of perceived interest and utility to developing countries. Topical lectures began with foundational material mostly derived from Math ematical Ecology: An Introduction (a compilation of the lectures of the 1982 course published by Springer-Verlag in this series, Volume 17) and, when possible, progressed to the frontiers of research. In addition to the course lectures, workshops were arranged for small groups to supplement and enhance the learning experience. Other perspectives were provided through presentations by course participants and speakers at the associated Research Conference. Many of the research papers are in a companion volume, Mathematical Ecology: Proceedings Trieste 1986, published by World Scientific Press in 1988. This book is structured primarily by application area. Part II provides an introduction to mathematical and statistical applications in resource management.
This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.
Infectious Disease Epidemiology is a concise reference guide which provides trainees and practicing epidemiologists with the information that they need to understand the basic concepts necessary for working in this specialist area. Divided into two sections, part one comprehensively covers the basic principles and methods relevant to the study of infectious disease epidemiology. It is organised in order of increasing complexity, ranging from a general introduction to subjects such as mathematical modelling and sero-epidemiology. Part two examines key major infectious diseases that are of global significance. Grouped by their route of transmission for ease of reference, they include diseases that present a particular burden or a high potential for causing mortality. This practical guide will be essential reading for postgraduate students in infectious disease epidemiology, health protection trainees, and practicing epidemiologists.
This book is an introduction to mathematical biology for students with no experience in biology, but who have some mathematical background. The work is focused on population dynamics and ecology, following a tradition that goes back to Lotka and Volterra, and includes a part devoted to the spread of infectious diseases, a field where mathematical modeling is extremely popular. These themes are used as the area where to understand different types of mathematical modeling and the possible meaning of qualitative agreement of modeling with data. The book also includes a collections of problems designed to approach more advanced questions. This material has been used in the courses at the University of Trento, directed at students in their fourth year of studies in Mathematics. It can also be used as a reference as it provides up-to-date developments in several areas.
Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).