Download Free The Plasma Electrolytic Modification Of Metals And Alloys Book in PDF and EPUB Free Download. You can read online The Plasma Electrolytic Modification Of Metals And Alloys and write the review.

Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), functionalizes surfaces, improving the mechanical, thermal, and corrosion performance of metallic substrates, along with other tailored properties (e.g., biocompatibility, catalysis, antibacterial response, self-lubrication, etc.). The extensive field of applications of this technique ranges from structural components, in particular, in the transport sector, to more advanced fields, such as bioengineering. The present Special Issue covers the latest advances in PEO‐coated light alloys for structural (Al, Mg) and biomedical applications (Ti, Mg), with 10 research papers and 1 review from leading research groups around the world.
This book explores non-standard processes in complex electrochemical systems, covering the structure and phase composition of modified alloys, saturation kinetics, and properties of surface layers. It also investigates the plasma electrolytic polishing of many alloys. The book presents the physicist with conditions of heating metals up to 1000 °C inside a solution, the chemist with reactions in vapour-gaseous media and on the surface of an electrode, and the metal scientist with the diffusion saturation of metals with nitrogen, carbon and boron. It will also appeal to engineers, university and college professors, and other researchers in related fields.
Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.
The growing use of light alloys in industries such as aerospace, sports equipment and biomedical devices is driving research into surface engineering technologies to enhance their properties for the desired end use. Surface engineering of light alloys: Aluminium, magnesium and titanium alloys provides a comprehensive review of the latest technologies for modifying the surfaces of light alloys to improve their corrosion, wear and tribological properties.Part one discusses surface degradation of light alloys with chapters on corrosion behaviour of magnesium alloys and protection techniques, wear properties of aluminium-based alloys and tribological behaviour of titanium alloys. Part two reviews surface engineering technologies for light alloys including anodising, plasma electrolytic oxidation, thermal spraying, cold spraying, physical vapour deposition, plasma assisted surface treatment, PIII/PSII treatments, laser surface modification, ceramic conversion and duplex treatments. Part three covers applications for surface engineered light alloys including sports equipment, biomedical devices and plasma electrolytic oxidation and anodised aluminium alloys for spacecraft applications.With its distinguished editor and international team of contributors, Surface engineering of light alloys: Aluminium, magnesium and titanium alloys is a standard reference for engineers, metallurgists and materials scientists looking for a comprehensive source of information on surface engineering of aluminium, magnesium and titanium alloys. - Discusses surface degradation of light alloys considering corrosion behaviour and wear and tribological properties - Examines surface engineering technologies and modification featuring plasma electrolytic oxidation treatments and both thermal and cold spraying - Reviews applications for engineered light alloys in sports equipment, biomedical devices and spacecraft
Dental Implants: Materials, Coatings, Surface Modifications and Interfaces with Oral Tissues provides readers with information on past and contemporary advances in the design and modification of dental implants to enhance osseointegration and biocompatibility. The book begins with a look at the current status of dental implants, materials and fabrication methods. Chapters then cover surface modification techniques and a variety of inorganic, organic and biological coatings. Final sections cover tissue-implant interfaces. Written by a multidisciplinary team of materials scientists, dental clinicians and implantologists, this book is an essential reference for materials scientists, dental practitioners and researchers and students in academia. - Covers all aspects related to dental implants, including implant materials science, their fabrication, surface coatings and their clinical applications - Provides detailed information on surface modification on surfaces coated with inorganic, organic and biological materials - Discusses the modification of dental implants, including implant-bone interaction enhanced by coatings on dental implant surfaces - Written by a multidisciplinary team of materials scientists, dental clinicians and Implantologists
Modern metallurgy is a fascinating field of research, full of discoveries, commercial opportunities and industrial utility. Encyclopedia of Materials: Metals and Alloys is a new, multidisciplinary reference work offering a comprehensive coverage of this exciting area, and consolidating research activities in all experimental and theoretical aspects of metallic materials, intermetallic compounds, alloys, blends and composites. Key focus is on those aspects of the science of metals concerned with their manufacturing, processing and fabrication, the relationship between the macro/micro/nanostructures and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical), industrial application, surface modification and functionalization of metals – and, importantly, resource and supply chain issues, and life-cycle and sustainability practices. This title provides users with a single and unique reference source, incorporating elements from many different disciplines. An invaluable addition to any reference library of engineers, chemists and physicists, both from industry and academia. Comprehensive and accessible - offers users a ‘one stop’ comprehensive resource, providing contemporary reviews of current metallurgy research, and an insight into the future direction of the field Clearly structured - meticulously organized, chapters are split into 13 sections on key topics and clearly cross-referenced to allow students, researchers, and professionals to find relevant information quickly and easily Multidisciplinary - chapters written by academics and practitioners from various fields and regions ensure that the knowledge within is easily understood by, and applicable to, a large audience Contemporary content - emphasis is given to clean energy, green transport, healthcare and next-generation manufacturing
Textbook; grad.
This book contains selected contributions on surface modification to improve the properties of solid materials. The surface properties are tailored either by functionalization, etching, or deposition of a thin coating. Functionalization is achieved by a brief treatment with non-equilibrium gaseous plasma containing suitable radicals that interact chemically with the material surface and thus enable the formation of rather stable functional groups. Etching is performed in order to modify the surface morphology. The etching parameters are selected in such a way that a rich morphology of the surfaces is achieved spontaneously on the sub-micrometer scale, without using masks. The combination of adequate surface morphology and functionalization of materials leads to superior surface properties which are particularly beneficial for the desired response upon incubation with biological matter. Alternatively, the materials are coated with a suitable thin film that is useful in various applications from food to aerospace industries.
This book offers readers a valuable overview of recent advances in biomedical engineering, as applied to the modern dentistry. It begins by studying the biomaterials in dentistry, and materials used intraoperatively during oral and maxillofacial surgery procedures. Next, it considers the subjects in which biomedical engineers can be influential, such as 3-dimensional (3D) imaging, laser and photobiomodulation, surface modification of dental implants, and bioreactors. Hard and soft tissue engineerings in dentistry are discussed, and some specific and essential methods such as 3D-printing are elaborated. Presenting particular clinical functions of regenerative dentistry and tissue engineering in treatment of oral and maxillofacial soft tissues is the subject of a separate chapter. Challenges in the rehabilitation handling of large and localized oral and maxillofacial defects is a severe issue in dentistry, which are considered to understand how bioengineers help with treatment methods in this regard. Recent advances in nanodentistry is discussed followed by a chapter on the applications of stem cell-encapsulated hydrogel in dentistry.Periodontal regeneration is a challenging issue in dentistry, and thus, is going to be considered separately to understand the efforts and achievements of tissue engineers in this matter. Oral mucosa grafting is a practical approach in engineering and treatment of tissues in ophthalmology, which is the subject of another chapter. Microfluidic approaches became more popular in biomedical engineering during the last decade; hence, one chapter focuses on the advanced topic of microfluidics technologies using oral factors as saliva-based studies. Injectable gels in endodontics is a new theme in dentistry that bioengineering skills can advance its development, specifically by producing clinically safe and effective gels with regeneration and antibacterial properties. Engineered products often need to be tested in vivo before being clinical in dentistry; thus, one chapter is dedicated to reviewing applicable animal models in dental research. The last chapter covers the progress on the whole tooth bioengineering as a valuable and ultimate goal of many dental researchers. Offers readers an interdisciplinary approach that relates biomedical engineering and restorative dentistry Discusses recent technological achievements in engineering with applications in dentistry Provides useful tool to dental companies for future product planning, specifically to biomedical engineers engaged in dental research