Download Free The Physics Of Elementary Excitations Book in PDF and EPUB Free Download. You can read online The Physics Of Elementary Excitations and write the review.

This book is an introduction to the physics of elementary excitations in condensed matter with emphasis on basic concepts and their mathematical representations. The nature of the book is mainly determined by the fact that it was originally written, in Japanese, as one volume of Iwanami Series of Fundamental Physics supervised by Professor H. Yukawa. Our task was to portray the theory of condensed matter from a unified point of view for the student looking for his own research field and also for more senior readers interested in fundamentals of contemporary physics. As our point of view, we chose the concept of elementary excitation, which we believe to be one of the most fruitful concepts discovered by the quantum theory of matter. The present English edition has been translated by the authors themselves from the second, revised Japanese edition published in 1978, six years after publication of the first edition. In translating, we have introduced no major modifications; only the list of references has been made more suitable to overseas readers. In the English as well as in the Japanese editions, Chaps. 1,4, and part of 6 were written by Nakajima, Chaps. 2, 5, and 7 by Toyozawa, and Chaps. 3 and part of 6 by Abe. Finally we should like to thank Professor P. Fulde for kind help and Dr. H. Lotsch, SpriIiger-Verlag, for patient cooperation in making this English edition a reality.
This text continues to fill the need to communicate the present view of a solid as a system of interacting particles which, under suitable circumstances, behaves like a collection of nearly independent elementary excitations. In addition to introducing basic concepts, the author frequently refers to experimental data. Usually, both the basic theory and the applications discussed deal with the behavior of '`'simple' metals, rather than the '`'complicated' metals, such as the transition metals and the rare earths. Problems have been included for most of the chapters.
This book is an introduction to the physics of elementary excitations in condensed matter with emphasis on basic concepts and their mathematical representations. The nature of the book is mainly determined by the fact that it was originally written, in Japanese, as one volume of Iwanami Series of Fundamental Physics supervised by Professor H. Yukawa. Our task was to portray the theory of condensed matter from a unified point of view for the student looking for his own research field and also for more senior readers interested in fundamentals of contemporary physics. As our point of view, we chose the concept of elementary excitation, which we believe to be one of the most fruitful concepts discovered by the quantum theory of matter. The present English edition has been translated by the authors themselves from the second, revised Japanese edition published in 1978, six years after publication of the first edition. In translating, we have introduced no major modifications; only the list of references has been made more suitable to overseas readers. In the English as well as in the Japanese editions, Chaps. 1,4, and part of 6 were written by Nakajima, Chaps. 2, 5, and 7 by Toyozawa, and Chaps. 3 and part of 6 by Abe. Finally we should like to thank Professor P. Fulde for kind help and Dr. H. Lotsch, SpriIiger-Verlag, for patient cooperation in making this English edition a reality.
This book has grown from lectures given in an advanced course in the theory of solids at the University of Illinois during the fall semester 1961-62. It was assumed that the student possessed a knowledge of quantum mechanics equivalent to a year's course in that topic; no prior knowledge of field theory was assumed. The course was designed to follow one in the one-electron or band theory of solids. However, in the view of the wide applicability (to plasma physics, nuclear physics, low-temperature physics) of many of the physical ideas and techniques developed in the course, a prior knowledge of solid-state physics was not regarded as a sine qua non. For this reason, both Chapter 2 on phonons and Chapter 3 on electrons contain a certain amount of material which is usually included in an introductory solid-state physics course.
The Advanced Study Institute on 'Elementary Excitations in Solids, Molecules, and Atoms' was held at the University of Antwerp (U.I.A.) from June 18th till June 30th 1973. The In stitute was sponsored by NATO. Co-sponsors were: Agfa-Gevaert N.V. (Mortsel - Belgium), Bell Telephone Mfg. Co. (Antwerp Belgium), the National Science Foundation (Washington D.C. - U.S.A.) and the University of Antwerp (U.I.A.). A total of 120 lecturers and participants attended the Institute. Over the last few years, substantial progress has been made in the description of the elementary excitations of the elec tronic and vibrational systems and their interactions. Parallel with this, the experimentalists have obtained outstanding re sults, partly as a result of availability of coherent light sour ces from the far infrared through the visible region, and partly because of the availability of synchrotron radiation sources in the soft X-ray region. The results of today will lead to fur ther progress over the next years. It was the purpose of this NATO Advanced Study Institute to present astate of the art, namely a survey of experiment and theory.
Aimed at graduate students and researchers, this book covers the key aspects of the modern quantum theory of solids, including up-to-date ideas such as quantum fluctuations and strong electron correlations. It presents in the main concepts of the modern quantum theory of solids, as well as a general description of the essential theoretical methods required when working with these systems. Diverse topics such as general theory of phase transitions, harmonic and anharmonic lattices, Bose condensation and superfluidity, modern aspects of magnetism including resonating valence bonds, electrons in metals, and strong electron correlations are treated using unifying concepts of order and elementary excitations. The main theoretical tools used to treat these problems are introduced and explained in a simple way, and their applications are demonstrated through concrete examples.
The Advanced Study Institute on 'Elementary Excitations in Solids, Molecules, and Atoms' was held at the University of Antwerp (U.I.A.) from June 18th till June 30th 1973. The In stitute was sponsored by NATO. Co-sponsors were: Agfa-Gevaert N.V. (Mortsel-Belgium), Bell Telephone Mfg. Co. (Antwerp-Belgium), I.B.M. BelgiumN. V. (Brussels-Belgium), the National Science Founda tion (Washington D.C. - U.S .A.) and the Uni versi ty of Antwerp (U.I .A.) . A total of 120 lecturers and participants attended the Institute. Over the last few years, substantial progress has been made in the description of the elementary excitations of the elec tronic and vibrational systems and their interactions. Parallel with this, the experimentalists have obtained outstanding re sults, partly as a result of availability of coherent light sour ces from the far infrared through the visible region, and partly because of the availability of synchrotron radiation sources in the soft X-ray region. The results of today will lead to fur ther progress over the next years. It was the purpose of this NATO Advanced Study Institute to present a state of the art, namely a survey of experiment and theory.