Download Free The Physical Properties Of Colloidal Solutions Book in PDF and EPUB Free Download. You can read online The Physical Properties Of Colloidal Solutions and write the review.

Colloid and Interface Science in Pharmaceutical Research and Development describes the role of colloid and surface chemistry in the pharmaceutical sciences. It gives a detailed account of colloid theory, and explains physicochemical properties of the colloidal-pharmaceutical systems, and the methods for their measurement. The book starts with fundamentals in Part I, covering fundamental aspects of colloid and interface sciences as applied to pharmaceutical sciences and thus should be suitable for teaching. Parts II and III treat applications and measurements, and they explains the application of these properties and their influence and use for the development of new drugs. - Provides a clear description of the fundamentals of colloid and interface science relevant to drug research and development - Explains the physicochemical/colloidal basis of pharmaceutical science - Lists modern experimental characterization techniques, provides analytical equations and explanations on analyzing the experimental data - Describes the most advanced techniques, AFM (Atomic Force Microscopy), SFA (Surface Force Apparatus) in detail
Colloidal Surfactants: Some Physicochemical Properties focuses on the study of surface active agents. This book elaborates the importance of surface active agents in detergency, textile industry, and biological research. The four distinctive features of the substance—moderate maximum concentration of molecularly dispersed species; surface and interfacial depression in very dilute solution; micelle formation above a certain concentration; and solubilization of water-insoluble substances by micelles, are also described. Other topics include the effect of molecular type on the critical micelle concentration, critical micelle concentration, interaction of paraffin chain electrolytes with colloids, and monolayer studies of surface active agents. This publication is suitable for chemists and specialists researching on colloidal surfactants.
This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between aggregates. It is illustrated how such knowledge may significantly enhance the characterisation of colloidal suspensions. The final part of the book refers to the information, ideas and concepts already presented in order to address technical aspects of the preparation of colloidal suspensions—in particular the performance of relevant dispersion techniques and the stability of colloidal suspensions.
Intended for industrial chemists and chemical engineers, this book offers a concise review of the concepts and techniques applicable to emulsions and dispersions. Its topics are arranged under the headings of particulates, interfaces, stability of dispersions and dispersed-phase systems.
Colloid and Interface Chemistry for Water Quality Control provides basic but essential knowledge of colloid and interface science for water and wastewater treatment. Divided into two sections, chapters 1 to 8 presents colloid chemistry including simple history and basic concepts, diffusion and Brown Motion, sedimentation, osmotic pressure, optical properties, rheology properties, electric properties, emulsion, foam and gel, and so on; chapters 9 to provides interface chemistry theories including the surface of liquid, the surface of solution, and the surface of solid. This valuable book is the only one that presents colloid and interface chemistry from the water quality control perspective. This book was written for graduate students in the area of water treatment and environmental engineering, and it could be used as the reference for researchers and engineers in the same area. - Concise content makes this suitable for both teaching and learning - Focuses on water treatment technology and methods, links colloid and surface chemistry to water treatment applications - Not only addresses all the important physical-chemistry principles and theories, but also presents new developed knowledge on water treatment - Includes exercises, problems and solutions, which are very helpful for testing learning and understanding
The Role of Colloidal Systems in Environmental Protection describes the importance of colloids in many applications that contribute to environmental protection, including drinking water and wastewater treatment, heavy metal remediation, treatment of radioactive materials, corrosion, and energy conversion. Knowledge of the physical and chemical composition of colloids is important to understand and accurately model the relevant processes. The book familiarizes the reader with the technological features of the application of colloids in environmental protection, and provides chemical engineers, researchers, and scientists in academic and corporate communities with the latest developments in this field. Each chapter covers the whole spectrum of the relevant science, from the fundamentals to applications. - Provides the applied technological features of colloids in environmental protection - Gives insight into the use of bio-solid colloids as contaminant carriers - Covers the natural occurrence of biosurfactants in the environment and their applications - Provides information on the use of nanoparticles for environmental applications - Chapters written by recognized and respected experts in the field from all over the world
'The overall book content is excellently coordinated to form a synchronised story, interesting to a broad scientific audience … The book summarises the present knowledge in the field, introduces fundamental concepts to the beginners, describes key measuring methods and presents several different typical demonstrative systems, some of them exhibiting an extraordinary rich spectrum of structures and superstructures. I am sure that with time the book will become an attractor to a broad audience (physicists, chemists, material scientists, engineers, etc.), ranging from students, beginners in the field to experienced researchers. To summarise, this is the book that I have been missing on my bookshelf.'Liquid Crystals TodayWhile liquid crystals are today widely known for their successful application in flat panel displays (LCDs), academic liquid crystal research is more and more targeting situations where these anisotropic fluids are put to completely different use, in varying contexts. A particularly strong focus is on colloidal liquid crystals, where particles, bubbles or drops are dispersed in a liquid crystal phase. The liquid crystal can act as a host phase, with the inclusions constituting foreign guests that disturb the local order in interesting ways, often resulting in large-scale positional arrangement and/or uniform alignment of the guests. But it may also be formed by solid particles themselves, if these are of nanoscale dimensions and of disc- or rod-shape, and if they are suspended in an isotropic liquid host at sufficient concentration.This book aims to cover both the modern research tracks, gathering pioneering researchers of the different subfields to give a concise overview of the basis as well as the prospects of their respective specialties. The scope spans from curiosity-driven fundamental scientific research to applied sciences. Over the course of the next decade, the former is likely to generate new tracks of the latter type, considering the exploratory and productive phase of this young research field.