Download Free The Physical Metallurgy Of Precipitation Hardenable Stainless Steels Book in PDF and EPUB Free Download. You can read online The Physical Metallurgy Of Precipitation Hardenable Stainless Steels and write the review.

This book is intended both as a resource for engineers and as an introduction to the layman about our most important metal system. After an introduction that deals with the history and refining of iron and steel, the rest of the book examines their physical properties and metallurgy. To elaborate on the importance of iron and steel, we can refer to the fact that modern civilization as we know it would not be possible without it. Steel is essential in the machinery necessary for manufacturing that meets our needs. Even the words themselves have come to suggest strength. Phrases such as 'iron willed', 'iron fisted', 'iron clad', 'iron curtain' and 'pumping iron' imply strength. A 'steely glance' is a stern look. 'A heart of steel' refers to a very hard demeanor. The Russian dictator, Stalin (which means steel in Russian), chose the name to invoke fear in those under him.
Various aspects of the physical metallurgy of the 18 % nickel maraging steels are discussed in this report in the light of the knowledge which has thus far been accumulated on these steels. The 18 % nickel type of maraging steel was singled out for discussion because of its especially attractive combination of strength and fracture toughness, the comparative simplicity with which it can be hardened, and the relative ease with which it can be formed and joined. The highnickel maraging steels are considered to be outstanding members of a loose-knit family of agehardenable or precipitation-hardenable martensitic steels. Some comparisons and analogies are drawn among various members of this family with particular reference to the 18% nickel steels. (Author).
The semiaustenitic precipitation-hardenable stainless steels remain austenitic on cooling rom a solution heat treatment at about 1950 F. In this form they are readily fabricable. Subsequent treatment at about 1400 or at about 1725 F depletes the austenite of Cr and C to the extent that martensite forms on cooling to room temperature or -100 F, respectively. Final hardening is effected by tempering, or aging, at 750 to 1100 F. The semiaustenitic precipitation-hardenable stainless steels may be obtained as transformed at the mill by cold rolling. In this condition they lack the good formability of solution-heat-treated material. However, the fabricator need only temper them to obtain very high strengths. These steels have a combination of good formability, high strength, and excellent corrosion resistance that is not easily matched by other materials.
THIS REPORT IS MAINLY CONCERNED WITH FORGINGS MADE FROM MARTENSITIC STEELS HEAT TREATED TO STRENGTHS RANGING FROM 240,000 TO 300,000 PSI. FORGING CHARACTERISTICS, DESIGN LIMITATIONS, DIMENSIONAL TOLERANCES, AND QUALITY-CONTROL PROBLEMS ARE DISCUSSED. A CONSIDERABLE AMOUNT OF DATA ON MECHANICAL PROPERTIES IS ALSO PRESENTED. IN ADDITION, THE REPORT SUMMARIZES THE AVAILABLE INFORMATION ON FORGED, SEMIAUSTENITIAL STEELS. THIS COMPILATION IS BASED ON PUBLISHED ARTICLES, GOVERNMENT REPORTS, AND INTERVIEWS WITH PRODUCERS AND USERS OF STEEL FORGINGS.
This report summarizes the information generated since the middle of 1961 on the chemical, physical, and mechanical properties of refractory metals that are coated with oxidation-resistant coatings of advanced-experimental or commercial status. It is a supplement to DMIC Report 162, Coatings for the Protection of Refractory Metals from Oxidation, dated November 24, 1961. Recent data on specific silicide- and aluminide- type coatings for columbium, molybdenum, tantalum, and tungsten and their alloys reflect general advances in coating quality and performance, understanding of the behavior of coated systems, and more complete realization of the problems associated with the use of coated hardware.