Download Free The Philosophy Of Mathematics And Mathematical Practice Book in PDF and EPUB Free Download. You can read online The Philosophy Of Mathematics And Mathematical Practice and write the review.

There is an urgent need in philosophy of mathematics for new approaches which pay closer attention to mathematical practice. This book will blaze the trail: it offers philosophical analyses of important characteristics of contemporary mathematics and of many aspects of mathematical activity which escape purely formal logical treatment.
1. Philosophy of Mathematics and Mathematical Practice in the Early Seventeenth Century p. 8 1.1 The Quaestio de Certitudine Mathematicarum p. 10 1.2 The Quaestio in the Seventeenth Century p. 15 1.3 The Quaestio and Mathematical Practice p. 24 2. Cavalieri's Geometry of Indivisibles and Guldin's Centers of Gravity p. 34 2.1 Magnitudes, Ratios, and the Method of Exhaustion p. 35 2.2 Cavalieri's Two Methods of Indivisibles p. 38 2.3 Guldin's Objections to Cavalieri's Geometry of Indivisibles p. 50 2.4 Guldin's Centrobaryca and Cavalieri's Objections p. 56 3. Descartes' Geometrie p. 65 3.1 Descartes' Geometrie p. 65 3.2 The Algebraization of Mathematics p. 84 4. The Problem of Continuity p. 92 4.1 Motion and Genetic Definitions p. 94 4.2 The "Causal" Theories in Arnauld and Bolzano p. 100 4.3 Proofs by Contradiction from Kant to the Present p. 105 5. Paradoxes of the Infinite p. 118 5.1 Indivisibles and Infinitely Small Quantities p. 119 5.2 The Infinitely Large p. 129 6. Leibniz's Differential Calculus and Its Opponents p. 150 6.1 Leibniz's Nova Methodus and L'Hopital's Analyse des Infiniment Petits p. 151 6.2 Early Debates with Cluver and Nieuwentijt p. 156 6.3 The Foundational Debate in the Paris Academy of Sciences p. 165 Appendix Giuseppe Biancani's De Mathematicarum Natura p. 178 Notes p. 213 References p. 249 Index p. 267.
The philosophy of mathematics is an exciting subject. Philosophy of Mathematics: Classic and Contemporary Studies explores the foundations of mathematical thought. The aim of this book is to encourage young mathematicians to think about the philosophical issues behind fundamental concepts and about different views on mathematical objects and mathematical knowledge. With this new approach, the author rekindles an interest in philosophical subjects surrounding the foundations of mathematics. He offers the mathematical motivations behind the topics under debate. He introduces various philosophical positions ranging from the classic views to more contemporary ones, including subjects which are more engaged with mathematical logic. Most books on philosophy of mathematics have little to no focus on the effects of philosophical views on mathematical practice, and no concern on giving crucial mathematical results and their philosophical relevance, consequences, reasons, etc. This book fills this gap. The book can be used as a textbook for a one-semester or even one-year course on philosophy of mathematics. "Other textbooks on the philosophy of mathematics are aimed at philosophers. This book is aimed at mathematicians. Since the author is a mathematician, it is a valuable addition to the literature." - Mark Balaguer, California State University, Los Angeles "There are not many such texts available for mathematics students. I applaud efforts to foster the dialogue between mathematics and philosophy." - Michele Friend, George Washington University and CNRS, Lille, France
Recounts the modern transformation of model theory and its effects on the philosophy of mathematics and mathematical practice.
A fascinating journey through intriguing mathematical and philosophical territory - a lively introduction to this contemporary topic.
An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.
In line with the emerging field of philosophy of mathematical practice, this book pushes the philosophy of mathematics away from questions about the reality and truth of mathematical entities and statements and toward a focus on what mathematicians actually do—and how that evolves and changes over time. How do new mathematical entities come to be? What internal, natural, cognitive, and social constraints shape mathematical cultures? How do mathematical signs form and reform their meanings? How can we model the cognitive processes at play in mathematical evolution? And how does mathematics tie together ideas, reality, and applications? Roi Wagner uniquely combines philosophical, historical, and cognitive studies to paint a fully rounded image of mathematics not as an absolute ideal but as a human endeavor that takes shape in specific social and institutional contexts. The book builds on ancient, medieval, and modern case studies to confront philosophical reconstructions and cutting-edge cognitive theories. It focuses on the contingent semiotic and interpretive dimensions of mathematical practice, rather than on mathematics' claim to universal or fundamental truths, in order to explore not only what mathematics is, but also what it could be. Along the way, Wagner challenges conventional views that mathematical signs represent fixed, ideal entities; that mathematical cognition is a rigid transfer of inferences between formal domains; and that mathematics’ exceptional consensus is due to the subject’s underlying reality. The result is a revisionist account of mathematical philosophy that will interest mathematicians, philosophers, and historians of science alike.
First published in 2003. Routledge is an imprint of Taylor & Francis, an informa company.
What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual accessibility and correct representation of the issues. Friend examines the standard theories of mathematics - Platonism, realism, logicism, formalism, constructivism and structuralism - as well as some less standard theories such as psychologism, fictionalism and Meinongian philosophy of mathematics. In each case Friend explains what characterises the position and where the divisions between them lie, including some of the arguments in favour and against each. This book also explores particular questions that occupy present-day philosophers and mathematicians such as the problem of infinity, mathematical intuition and the relationship, if any, between the philosophy of mathematics and the practice of mathematics. Taking in the canonical ideas of Aristotle, Kant, Frege and Whitehead and Russell as well as the challenging and innovative work of recent philosophers like Benacerraf, Hellman, Maddy and Shapiro, Friend provides a balanced and accessible introduction suitable for upper-level undergraduate courses and the non-specialist.
Thirteen promising young researchers write on what they take to be the right philosophical account of mathematics and discuss where the philosophy of mathematics ought to be going. New trends are revealed, such as an increasing attention to mathematical practice, a reassessment of the canon, and inspiration from philosophical logic.