Download Free The Performance And Stability Of Hydrogenated Amorphous Silicon Thin Film Transistors Book in PDF and EPUB Free Download. You can read online The Performance And Stability Of Hydrogenated Amorphous Silicon Thin Film Transistors and write the review.

Introduction to Thin Film Transistors reviews the operation, application and technology of the main classes of thin film transistor (TFT) of current interest for large area electronics. The TFT materials covered include hydrogenated amorphous silicon (a-Si:H), poly-crystalline silicon (poly-Si), transparent amorphous oxide semiconductors (AOS), and organic semiconductors. The large scale manufacturing of a-Si:H TFTs forms the basis of the active matrix flat panel display industry. Poly-Si TFTs facilitate the integration of electronic circuits into portable active matrix liquid crystal displays, and are increasingly used in active matrix organic light emitting diode (AMOLED) displays for smart phones. The recently developed AOS TFTs are seen as an alternative option to poly-Si and a-Si:H for AMOLED TV and large AMLCD TV applications, respectively. The organic TFTs are regarded as a cost effective route into flexible electronics. As well as treating the highly divergent preparation and properties of these materials, the physics of the devices fabricated from them is also covered, with emphasis on performance features such as carrier mobility limitations, leakage currents and instability mechanisms. The thin film transistors implemented with these materials are the conventional, insulated gate field effect transistors, and a further chapter describes a new thin film transistor structure: the source gated transistor, SGT. The driving force behind much of the development of TFTs has been their application to AMLCDs, and there is a chapter dealing with the operation of these displays, as well as of AMOLED and electrophoretic displays. A discussion of TFT and pixel layout issues is also included. For students and new-comers to the field, introductory chapters deal with basic semiconductor surface physics, and with classical MOSFET operation. These topics are handled analytically, so that the underlying device physics is clearly revealed. These treatments are then used as a reference point, from which the impact of additional band-gap states on TFT behaviour can be readily appreciated. This reference book, covering all the major TFT technologies, will be of interest to a wide range of scientists and engineers in the large area electronics industry. It will also be a broad introduction for research students and other scientists entering the field, as well as providing an accessible and comprehensive overview for undergraduate and postgraduate teaching programmes.
This book explains the basic elements that readers need to know about amorphous silicon material and a-Si:H TFTs. It includes the main principles of the transistors operation, modeling and applications. Fundamentals about transport mechanisms in a-Si:H TFTs and the associated electronic properties are introduced and extended to design examples and strategies to build reliable, large-area, performance optimized circuits. The book also reviews the effect of the amorphous silicon nature and how it impacts the transistors properties and their relevant applications. Fundamentals are made as simple as possible to be easily grasped as they cover everything expected to be important for an easy understanding of the introduced concepts. The author’s approach is geared toward undergraduate and graduate students, but the content is also appropriate for circuit simulator developers, integrated circuit designers and manufacturers, as well as everyone engaged in work on large area integrated circuit technologies and photovoltaics.
This special issue of ECS Transactions is for the 20th anniversary of the Thin Film Transistor (TFT) symposium series. Renowned TFT experts in related materials, processes, devices, and applications from the world serve as invited speakers to review the technology and science progress in the past two decades. Selected contributed papers are also included in this issue.
This is the first reference on amorphous silicon and polycrystalline silicon thin film transistors that gives a systematic global review of all major topics in the field. These volumes include sections on basic materials and substrates properties, fundamental device physics, critical fabrication processes (structures, a-Si: H, dielectric, metallization, catalytic CVD), and existing and new applications. The chapters are written by leading researchers who have extensive experience with reputed track records. Thin Film Transistors provides practical information on preparing individual functional a-Si: H TFTs and poly-Si TFTs as well as large-area TFT arrays. Also covered are basic theories on the a-Si: H TFT operations and unique material characteristics. Readers are also exposed to a wide range of existing and new applications in industries.
The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.
This is the first reference on amorphous silicon and polycrystalline silicon thin film transistors that gives a systematic global review of all major topics in the field. These volumes include sections on basic materials and substrates properties, fundamental device physics, critical fabrication processes (structures, a-Si: H, dielectric, metallization, catalytic CVD), and existing and new applications. The chapters are written by leading researchers who have extensive experience with reputed track records. Thin Film Transistors provides practical information on preparing individual functional a-Si: H TFTs and poly-Si TFTs as well as large-area TFT arrays. Also covered are basic theories on the a-Si: H TFT operations and unique material characteristics. Readers are also exposed to a wide range of existing and new applications in industries.
This book gives the first systematic and complete survey of technology and application of amorphous silicon, a material with a huge potential in electronic applications. The book features contributions by world-wide leading researchers in this field.
The utilization of sun light is one of the hottest topics in sustainable energy research. To efficiently convert sun power into a reliable energy – electricity – for consumption and storage, silicon and its derivatives have been widely studied and applied in solar cell systems. This handbook covers the photovoltaics of silicon materials and devices, providing a comprehensive summary of the state of the art of photovoltaic silicon sciences and technologies. This work is divided into various areas including but not limited to fundamental principles, design methodologies, wafering techniques/fabrications, characterizations, applications, current research trends and challenges. It offers the most updated and self-explanatory reference to all levels of students and acts as a quick reference to the experts from the fields of chemistry, material science, physics, chemical engineering, electrical engineering, solar energy, etc..
Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, starting out with the physical properties, but concentrating on device applications. A special emphasis is given to amorphous silicon and microcrystalline silicon as photovoltaic materials, along with a model that allows these systems to be physically described in the simplest manner possible, thus allowing the student or scientist/engineer entering the field of thin-film electronics to master a few basic concepts that are distinct from those in the field of conventional semiconductors. The main part of the book deals with solar cells and modules by illustrating the basic functioning of these devices, along with their limitations, design optimization, testing and fabrication methods. Among the manufacturing processes discussed are plasma-assisted and hot-wire deposition, sputtering, and structuring techniques.
Gathering some 30 entries from the Encyclopedia of Sustainability Science and Technology, this book presents fundamental principles and technologies for sustainably harnessing solar energy. Covers photovoltaics, solar thermal energy, solar radiation and more.