Download Free The Optimal Control Of Discrete Time Linear Systems With Random Parameters Book in PDF and EPUB Free Download. You can read online The Optimal Control Of Discrete Time Linear Systems With Random Parameters and write the review.

This book provides an introduction to the theory of linear systems and control for students in business mathematics, econometrics, computer science, and engineering. The focus is on discrete time systems, which are the most relevant in business applications, as opposed to continuous time systems, requiring less mathematical preliminaries. The subjects treated are among the central topics of deterministic linear system theory: controllability, observability, realization theory, stability and stabilization by feedback, LQ-optimal control theory. Kalman filtering and LQC-control of stochastic systems are also discussed, as are modeling, time series analysis and model specification, along with model validation. This second edition has been updated and slightly expanded. In addition, supplementary material containing the exercises is now available on the Springer Link's book website.
This will be the most up-to-date book in the area (the closest competition was published in 1990) This book takes a new slant and is in discrete rather than continuous time
As our title reveals, we focus on optimal control methods and applications relevant to linear dynamic economic systems in discrete-time variables. We deal only with discrete cases simply because economic data are available in discrete forms, hence realistic economic policies should be established in discrete-time structures. Though many books have been written on optimal control in engineering, we see few on discrete-type optimal control. More over, since economic models take slightly different forms than do engineer ing ones, we need a comprehensive, self-contained treatment of linear optimal control applicable to discrete-time economic systems. The present work is intended to fill this need from the standpoint of contemporary macroeconomic stabilization. The work is organized as follows. In Chapter 1 we demonstrate instru ment instability in an economic stabilization problem and thereby establish the motivation for our departure into the optimal control world. Chapter 2 provides fundamental concepts and propositions for controlling linear deterministic discrete-time systems, together with some economic applica tions and numerical methods. Our optimal control rules are in the form of feedback from known state variables of the preceding period. When state variables are not observable or are accessible only with observation errors, we must obtain appropriate proxies for these variables, which are called "observers" in deterministic cases or "filters" in stochastic circumstances. In Chapters 3 and 4, respectively, Luenberger observers and Kalman filters are discussed, developed, and applied in various directions. Noticing that a separation principle lies between observer (or filter) and controller (cf.
This volume brings about the contemporary results in the field of discrete-time systems. It covers papers written on the topics of robust control, nonlinear systems and recent applications. Although the technical views are different, they all geared towards focusing on the up-to-date knowledge gain by the researchers and providing effective developments along the systems and control arena. Each topic has a detailed discussions and suggestions for future perusal by interested investigators.
This book provides an introduction to the theory of linear systems and control for students in business mathematics, econometrics, computer science, and engineering; the focus is on discrete time systems. The subjects treated are among the central topics of deterministic linear system theory: controllability, observability, realization theory, stability and stabilization by feedback, LQ-optimal control theory. Kalman filtering and LQC-control of stochastic systems are also discussed, as are modeling, time series analysis and model specification, along with model validation.
Discrete-Time Linear Systems: Theory and Design with Applications combines system theory and design in order to show the importance of system theory and its role in system design. The book focuses on system theory (including optimal state feedback and optimal state estimation) and system design (with applications to feedback control systems and wireless transceivers, plus system identification and channel estimation).
Graduate-level text provides introduction to optimal control theory for stochastic systems, emphasizing application of basic concepts to real problems. "Invaluable as a reference for those already familiar with the subject." — Automatica.