Download Free The Neuroethology Of Social Behavior Book in PDF and EPUB Free Download. You can read online The Neuroethology Of Social Behavior and write the review.

A range of empirical and theoretical perspectives on the relationship between biology and social cognition from infancy through childhood. Recent research on the developmental origins of the social mind supports the view that social cognition is present early in infancy and childhood in surprisingly sophisticated forms. Developmental psychologists have found ingenious ways to test the social abilities of infants and young children, and neuroscientists have begun to study the neurobiological mechanisms that implement and guide early social cognition. Their work suggests that, far from being unfinished adults, babies are exquisitely designed by evolution to capture relevant social information, learn, and explore their social environments. This volume offers a range of empirical and theoretical perspectives on the relationship between biology and social cognition from infancy through childhood. The contributors consider scientific advances in early social perception and cognition, including findings on the development of face processing and social perceptual biases; explore recent research on early infant competencies for language and theory of mind, including a developmental account of how young children become moral agents and the role of electrophysiology in identifying psychological processes that underpin social cognition; discuss the origins and development of prosocial behavior, reviewing evidence for a set of innate predispositions to be social, cooperative, and altruistic; examine how young children make social categories; and analyze atypical social cognition, including autism spectrum disorder and psychopathy. Contributors Lior Abramson, Renée Baillargeon, Pascal Belin, Frances Buttelmann, Sofia Cardenas, Michael J. Crowley, Fabrice Damon, Jean Decety, Michelle de Haan, Ghislaine Dehaene-Lambertz, Melody Buyukozer Dawkins, Xiao Pan Ding, Kristen A. Dunfield, Rachel D. Fine, Ana Fló, Jennifer R. Frey, Susan A. Gelman, Diane Goldenberg, Marie-Hélène Grosbras, Tobias Grossmann, Caitlin M. Hudac, Dora Kampis, Tara A. Karasewich, Ariel Knafo-Noam, Tehila Kogut, Ágnes Melinda Kovács, Valerie A. Kuhlmeier, Kang Lee, Narcis Marshall, Eamon McCrory, David Méary, Christos Panagiotopoulos, Olivier Pascalis, Markus Paulus, Kevin A. Pelphrey, Marcela Peña, Valerie F. Reyna, Marjorie Rhodes, Ruth Roberts, Hagit Sabato, Darby Saxbe, Virginia Slaughter, Jessica A. Sommerville, Maayan Stavans, Nikolaus Steinbeis, Fransisca Ting, Florina Uzefovsky, Essi Viding
Historically the search for the neural bases of behavior goes back a long way. Neuroethology, which is concerned with the experimental analysis ofthe releasing and control mech anisms of behavior, is a young discipline. Results from this multidisciplinary branch of research, which uses physical, chemical, and mathematical methods, have not yet been extensively treated in textbooks of neurophysiology and ethology. This book is intended as a first attempt to pose major questions of neuroethology and to demonstrate, by means of selected research examples, some of the ways by which these questions are being approached. Inevitably this cannot be a complete and in depth detailed treatment of all of the neurobiology examples, and I realize that such a selection is of a subjective nature. The overall goal ofthe book is to present an introduction. After outlining some of the very basic neurophysiological and ethological concepts (Chaps. 2 and 3), neuroethological questions and methods are demonstrated extensively by means of a particular example (Chap. 4). There are two reasons to choose the visually guided prey-catching and avoidance behavior of the Common Toad: (1) it is a system which I have inves tigated for about fifteen years and therefore know best, (2) the toad story is one of the most comprehensive neuro ethological approaches so far. Thus, it is possible here to outline the major concepts of neuroethology and to pose the basic questions.
Vocal signals are central for social communication across a wide range of vertebrate species; consequently, it is critical to understand the mechanisms underlying the learning, control, and evolution of vocal communication. Songbirds are at the forefront of research into such neural mechanisms. Indeed, songbirds provide a particularly important model system for this endeavor because of the many parallels between birdsong and human speech. Specifically, (1) songbirds are one of the few vertebrate species that, like humans, learn their vocal signals during development, (2) the processes of song learning and control in songbirds shares many parallels with the process of speech acquisition in humans, and (3) there exist deep homologies between the circuits for the learning, control, and processing of vocal signals across songbirds and humans. In addition, because of the diversity of songbirds and song learning strategies, songbirds offer a powerful model system to use the comparative method to reveal mechanisms underlying the evolution of song learning and production. Taken together, research on songbirds can not only reveal general principles underlying vertebrate vocal communication but can also provide insight into potential mechanisms underlying the learning, control, and processing of speech. This volume will cover a range of topics in birdsong spanning multiple level of analysis. Chapters will be authored by the world’s leading experts on birdsong and will provide comprehensive reviews of the processes underlying song learning, of the neural circuits for song learning and control as well as for the extraction and processing of song information, of the selection pressures underlying song evolution, and of genetic and molecular mechanisms underlying the learning and evolution of song. The primary goals of this volume are to provide comprehensive, integrative, and comparative perspectives on birdsong and to underscore the importance of birdsong to biomedical research, evolutionary biology, and behavioral, systems, and computational neuroscience.The target audience of this volume will be graduate students, postdoctoral fellows, and established academics and neuroscientists who are interested in mechanisms of communication from an integrative and comparative perspective. The volume is intended to function as a high-profile and contemporary reference on current work related to the learning, control, processing, and evolution of birdsong. This volume will have broad appeal to comparative and sensory biologists, neurophysiologists, and behavioral, systems, and cognitive neuroscientists who attend meetings such as the Society for Neuroscience, the International Society for Neuroethology, and the Society for Integrative and Comparative Biology. Because of the relevance of birdsong research to understanding human speech, it is likely that the volume will also be of interest to speech researchers and clinicians researching communication, motor, and sensory processing disorders.
This edited volume is the first of its kind to bridge the epistemological gap between primate ethologists and primate neurobiologists. Leading experts in several fields review work ranging from primate foraging behavior to the neurophysiology of motor control, from vocal communication to the functions of the auditory cortex.
In the past fifteen years there has been considerable interest in neural circuits that initiate behavior patterns. For many types of behaviors, this involves decision-making circuits whose primary elements are neither purely sensory nor motor, but represent a higher order of neural pro cessing. Of the large number of studies on such systems, analyses of startle circuits compose a major portion, and have been carried out on systems found throughout the animal kingdom. Startle has been an im portant model because of the reliability of the behavioral act for laboratory study and the accessibility of the underlying neural circuitry. However, probably because of the breadth of the subject, this material has never been reviewed in a comprehensive way that presents the elements com mon to startle circuits in the different animal systems in which they occur. This book presents a diversity of approaches based on a broad back ground of animal groups ranging from the earliest nervous systems in cnidarians to the most recently evolved and advanced in mammals. The behaviors themselves are all short latency, fast motor acts, when consid ered on the time scale of the organism, and involve avoidance or evasion, although in some cases we do not yet completely understand their natural role. These behaviors occur in response to stimuli that have sudden or unexpected onset.
This book offers representative examples from fly and mouse models to illustrate the ongoing success of the synergistic, state-of-the-art strategy, focusing on the ways it enhances our understanding of sensory processing. The authors focus on sensory systems (vision, olfaction), which are particularly powerful models for probing the development, connectivity, and function of neural circuits, to answer this question: How do individual nerve cells functionally cooperate to guide behavioral responses? Two genetically tractable species, mice and flies, together significantly further our understanding of these processes. Current efforts focus on integrating knowledge gained from three interrelated fields of research: (1) understanding how the fates of different cell types are specified during development, (2) revealing the synaptic connections between identified cell types (“connectomics”) using high-resolution three-dimensional circuit anatomy, and (3) causal testing of how iden tified circuit elements contribute to visual perception and behavior.
Modern neuroscience research is inherently multidisciplinary, with a wide variety of cutting edge new techniques to explore multiple levels of investigation. This Third Edition of Guide to Research Techniques in Neuroscience provides a comprehensive overview of classical and cutting edge methods including their utility, limitations, and how data are presented in the literature. This book can be used as an introduction to neuroscience techniques for anyone new to the field or as a reference for any neuroscientist while reading papers or attending talks. - Nearly 200 updated full-color illustrations to clearly convey the theory and practice of neuroscience methods - Expands on techniques from previous editions and covers many new techniques including in vivo calcium imaging, fiber photometry, RNA-Seq, brain spheroids, CRISPR-Cas9 genome editing, and more - Clear, straightforward explanations of each technique for anyone new to the field - A broad scope of methods, from noninvasive brain imaging in human subjects, to electrophysiology in animal models, to recombinant DNA technology in test tubes, to transfection of neurons in cell culture - Detailed recommendations on where to find protocols and other resources for specific techniques - "Walk-through" boxes that guide readers through experiments step-by-step
The investigation of the relationships between a behavior pattern and its underlying sensory and neurophysiological mechanisms in both man and animals dates back well into the last century. However, the concepts and findings of ethology and experimental psychology, together with an improved understanding of how the nervous system is organized and how neurons interact with each other, have only in the last 30 years laid the groundwork for an in-depth analysis. The many technological advances achieved in neurophysiology and neuroanatomy have also played an important role in this. The study of the neuronal bases of behavior - for which the term "neuroethology" has been coined - has thus become one of the central themes of neuroscience. Kenneth David Roeder, who died in 1979, was one of the pioneers of this field of research. It is to him that the contributions in this book are dedicated. K.D. Roeder was among the first to attempt to define the correlation between the natural behavior of an experimental animal and the activity of single sensory and nerve cells. The ques tions he asked, his experimental approach, and his fundamental discoveries are pre sented in an introductory chapter.
This handbook lays out the science behind how animals think, remember, create, calculate, and remember. It provides concise overviews on major areas of study such as animal communication and language, memory and recall, social cognition, social learning and teaching, numerical and quantitative abilities, as well as innovation and problem solving. The chapters also explore more nuanced topics in greater detail, showing how the research was conducted and how it can be used for further study. The authors range from academics working in renowned university departments to those from research institutions and practitioners in zoos. The volume encompasses a wide variety of species, ensuring the breadth of the field is explored.