Download Free The Nature Of The Chemical Bond And The Structure Of Molecules And Crystals Book in PDF and EPUB Free Download. You can read online The Nature Of The Chemical Bond And The Structure Of Molecules And Crystals and write the review.

Thorough discussion of the various types of bonds, their relative natures, and the structure of molecules and crystals.
This is the perfect complement to "Chemical Bonding - Across the Periodic Table" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemical models and faster computers.
Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.
This book describes the bond valence model, a description of acid-base bonding which is becoming increasingly popular particularly in fields such as materials science and mineralogy where solid state inorganic chemistry is important. Recent improvements in crystal structure determination have allowed the model to become more quantitative. Unlike other models of inorganic chemical bonding, the bond valence model is simple, intuitive, and predictive, and can be used for analysing crystal structures and the conceptual modelling of local as well as extended structures. This is the first book to explore in depth the theoretical basis of the model and to show how it can be applied to synthetic and solution chemistry. It emphasizes the separate roles of the constraints of chemistry and of three-dimensional space by analysing the chemistry of solids. Many applications of the model in physics, materials science, chemistry, mineralogy, soil science, surface science, and molecular biology are reviewed. The final chapter describes how the bond valence model relates to and represents a simplification of other models of inorganic chemical bonding.
Atomic physics and its underlying quantum theory are the point of departure for many modern areas of physics, astrophysics, chemistry, biology, and even electrical engineering. This textbook provides a careful and eminently readable introduction to the results and methods of empirical atomic physics. The student will acquire the tools of quantum physics and at the same time learn about the interplay between experiment and theory. A chapter on the quantum theory of the chemical bond provides the reader with an introduction to molecular physics. Plenty of problems are given to elucidate the material. The authors also discuss laser physics and nonlinear spectroscopy, incorporating latest experimental results and showing their relevance to basic research. Extra items in the second edition include solutions to the exercises, derivations of the relativistic Klein-Gordon and Dirac equations, a detailed theoretical derivation of the Lamb shift, a discussion of new developments in the spectroscopy of inner shells, and new applications of NMR spectroscopy, for instance tomography.
Electron Density and Bonding in Crystals: Principles, Theory and X-Ray Diffraction Experiments in Solid State Physics and Chemistry provides a comprehensive, unified account of the use of diffraction techniques to determine the distribution of electrons in crystals. The book discusses theoretical and practical techniques, the application of electron density studies to chemical bonding, and the determination of the physical properties of condensed matter. The book features the authors' own key contributions to the subject as well a thorough, critical summary of the extensive literature on electron density and bonding. Logically organized, coverage ranges from the theoretical and experimental basis of electron density determination to its impact on investigations of the nature of the chemical bond and its uses in determining electromagnetic and optical properties of crystals. The main text is supplemented by appendices that provide clear, concise guidance on aspects such as systems of units, quantum theory of atomic vibrations, atomic orbitals, and creation and annihilation operators. The result is a valuable compendium of modern knowledge on electron density distributions, making this reference a standard for crystallographers, condensed matter physicists, theoretical chemists, and materials scientists.
Proceedings of the NATO Advanced Research Workshop on Physical-Chemical Properties from Weak Interactions, held in Erice, Italy, from 23 to 29 May 2001