Download Free The Nanotechnology Driven Agriculture Book in PDF and EPUB Free Download. You can read online The Nanotechnology Driven Agriculture and write the review.

Nanotechnology is believed to accelerate our fight to sustain and enhance crop productivity for the ever-increasing world population. It has been reckoned as one of the safest and most cost-efficient techniques to boost crop productivity in the future. The ever-increasing state-of-the-art availability of various nanomaterials has allowed us to pursue their beneficial properties in agronomy. Nanotechnology will help minimize the dependency on chemical fertilizers and existing crop production techniques that have already been exploited to their maximum potential. Therefore, in the present context, it could well be realized that agriculture will be driven by nanotechnology in the future. This book focuses on the application of nanotechnology for enhancing crop production through the application of nanofertilizers or nanocomposites. Several avenues of nanotechnology are beneficial in improving crop productivity in a sustainable manner, which has been presented in a comprehensive way. The book also delves into the mechanistic view of nanoparticle functioning and its role in stress alleviation. In addition, the book presents some recent insights into the application of nanotechnology for post-harvest management, stress tolerance and usage as nanobiosensors. Broadly, the book will encompass the following advances in the field, distinguishing it from other published volumes. The salient features include: · Role of nanoparticles in improving abiotic stress tolerance in plants. · Role of nanoparticles in protection against pathogens and pests. · Mechanism of nanoparticle-induced plant responses. · Synthesis and modification of nanoparticles to enhance their biological efficacy. · Prospects of nanofertilizers, nanoformulations, nanopesticides, etc., and their beneficial attributes. This book, therefore, presents this emerging topic and the most recent innovations in this field for postgraduate students, researchers and faculty members working in the fields of plant science, microbiology, biotechnology, agricultural sciences, etc.
Nanotechnology in Sustainable Agriculture presents applications of nanobiotechnology for eco-friendly agriculture practices. Implementing sustainable agriculture techniques is a crucial component in meeting projected global food demands while minimising toxic waste in the environment. Nano-technological tools – including nanoparticles, nanocapsules, nanotubes and nanomolecules – offer sustainable options to modernise agriculture systems. Written by nanotechnology experts, this book outlines how nano-formulations can improve yield without reliance on chemecial pesticides and reduce nutrient losses in fertilization. It reveals how nanotools are used for rapid disease diagnostics, in treating plant diseases and enhancing the capacity for plants to absorb nutrients. Features: Combines nanotechnology and agronomy presenting applications for improving plant performance and yields. Reveals nanotechnology-based products used for the soil and plant health management which mitigate climate change. Discusses roles of microbial endophytes, heavy metal nanoparticles and environment health, nano-nutrients, phytochemicals, green bioengineering and plant health. This book appeals to professionals working in the agriculture and food industry, as well as agricultural scientists and researchers in nanotechnology and agronomy.
Applications of microbial nanotechnology are currently emerging with new areas being explored. Biosynthesis of nanomaterials by microorganisms is a recently attracting interest as a new, exciting approach towards the development of ‘greener’ nanomanufacturing compared to traditional chemical and physical approaches. This book will cover recent advances of microbial nanotechnology in agriculture, industry, and health sectors.
Nanostructured materials are emerging as a new class of materials that exhibit unique microstructures and enhanced mechanical performance. As an outcome of this, these materials have attracted considerable attention in scientific communities all over the world. There is continuous research to facilitate product development, thereby improving product quality and reliability in industry. This volume is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. Special emphasis is given to new applications of nanostructures and nanocomposites in various fields, such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine. The chapters are divided into sections focusing on: Nanoparticles Assembly and Nanostructured Materials Nanocomposites Properties Nanostructured Materials for Biomedical Applications
This book presents a comprehensive overview of new and emerging nanotechnologies. It includes aspects of nanoparticle monitoring, toxicity, and public perception, and covers applications that address both crop growing and treatment of agricultural wastewater. Topics include nanoagrochemicals (nanofertilizers, -pesticides, -herbicides), nanobiosensors, and nanotechnologies for food processing, packaging, and storage, crop improvement and plant disease control. The group of expert authors is led by an experienced team of editors.
Rhizomicrobiome: Current Status and Future Prospects for Agriculture and Environment explores the important potential of biocontrol agents in the reduction of overexploitation of synthetic pesticides, enhancing crop production, and maintaining the natural texture and health of agricultural soils. As concerns about sustainable production challenge current practices, this book presents opportunities for utilizing biological systems as part of the solution. Rhizomicrobiome is a significant part of plant biological system which impacts the plant growth and survival in different physiological conditions. Its composition includes different microbial networks whose presence is mainly impacted by the root exudates. Archaea, bacteria, protozoa, fungi, oomycetes, nematodes, microarthropods etc. are the significant parts of the rhizomicrobiome. Rhizomicrobiome could be that novel ecosystem housing the bioinoculants that can help create sustainable, productive growth environments. Written by a team of global experts Rhizomicrobiome explores the full range of rhizomicrobiome topics including sustainable agriculture, food security, and environmental management and will be a valuable resource for researchers, academics and advanced students. - Introduces the latest advancement in the sustainable agricultural practices, microbial biocontrol, and environmental management - Presents the prospects of, wide applications of, traditional uses of, and modern practices of harnessing the potential of rhizomicrobiome - Includes informative illustrations of recent trends of phyto and soil microbiome
Nanotechnologies in Food provides an overview of the products and applications of nanotechnologies in agri-food and related sectors. Following on from the success of the first edition, this new edition has been revised and updated to bring the reader fully up to date on the emerging technological, societal, and policy and regulatory aspects in relation to nanotechnologies in food. This book contains new chapters discussing some of the aspects that have attracted a lot of debate and research in recent years, such as how the regulatory definition of ‘nanomaterial’ is shaping up in Europe and whether it will result in a number of exciting food additives being regarded as nanomaterials, how the new analytical challenges posed by manufactured nanoparticles in food are being addressed and whether the emerging field of nano delivery systems for food ingredients and supplements, made of food materials or other soft/degradable polymers, can raise any consumer safety concerns. The edition concludes by discussing the future trends of the technological developments in the area of nanotechnologies and potential future ‘fusion’ with other fields, such as biotechnology and synthetic biology. This book provides a source of much needed and up-to-date information on the products and applications of nanotechnology for the food sector - for scientists, regulators, and consumers alike. It also gives an independent, balanced, and impartial view of the potential benefits as well as risks that nanotechnology applications may bring to the food sector. Whilst providing an overview of the state-of-the-art and foreseeable applications to highlight opportunities for innovation, the book also discusses areas of uncertainty in relation to public perception of the new technological developments, and potential implications for consumer safety and current regulatory controls. The book also discusses the likely public perceptions of nanotechnologies in the light of past technological developments in the food sector, and how the new technology will possibly be regulated under the existing regulatory frameworks.
A comprehensive overview of the current state of this highly relevant topic. An interdisciplinary team of researchers reports on the opportunities and challenges of nanotechnology in the agriculture and food sector, highlighting the scientific, technical, regulatory, safety, and societal impacts. They also discuss the perspectives for the future, and provide insights into ways of assuring safety so as to obtain confidence for the consumer, as well as an overview of the innovations and applications. Essential reading for materials and agricultural scientists, food chemists and technologists, as well as toxicologists and ecotoxicologists.
In an era overshadowed by pressing global challenges such as climate change, burgeoning populations, and the depletion of natural resources, the agricultural landscape is at a critical juncture. The need for sustainable practices has never been more urgent, with conventional methods struggling to meet the demands of a growing population while grappling with environmental degradation. Harnessing NanoOmics and Nanozymes for Sustainable Agriculture delves into the heart of the problem, navigating the intricate web of challenges facing agriculture today. From dwindling crop yields to the environmental repercussions of conventional farming practices, the urgency to find innovative, sustainable solutions is paramount. Harnessing NanoOmics and Nanozymes for Sustainable Agriculture offers a comprehensive exploration of nanotechnology's potential to revolutionize agriculture, presenting a promising pathway toward enhanced productivity, minimizing environmental impact, and optimal resource utilization.
Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management highlights the latest advances in applying this important technology within agriculture sectors for sustainable growth, production and protection. The book explores various smart engineered nanomaterials which are now being used as an important tool for improving growth and productivity of crops facing abiotic stresses, improving the health of the soil in which those crops are growing, and addressing stresses once the plant begins to produce food yield. The book includes insights into the use of nanoparticles as bactericides, fungicides and nanofertilizers. In addition, the book includes an international representation of authors who have crafted chapters with clarity, reviewing up-to-date literature with lucid illustrations. It will be an important resource for researchers, nanobiotechnologists, agriculturists and horticulturists who need a comprehensive reference guide. - Broadens the role of smart engineered (carbon, fullerene or metal based, and more) nanomaterials, with up-to-date literature and practical illustrations - Equips readers with information on a number of morpho-physiological, biochemical, molecular phenomenon, and smart agricultural production - Enriches our understanding of various smart crop plants resilient to abiotic and biotic stresses in terms of nanomaterials exposure