Download Free The Morphology And Physiology Of Insect Chemosensory Systems Its Origin And Evolution Book in PDF and EPUB Free Download. You can read online The Morphology And Physiology Of Insect Chemosensory Systems Its Origin And Evolution and write the review.

Intraspecific communication involves the activation of chemoreceptors and subsequent activation of different central areas that coordinate the responses of the entire organism—ranging from behavioral modification to modulation of hormones release. Animals emit intraspecific chemical signals, often referred to as pheromones, to advertise their presence to members of the same species and to regulate interactions aimed at establishing and regulating social and reproductive bonds. In the last two decades, scientists have developed a greater understanding of the neural processing of these chemical signals. Neurobiology of Chemical Communication explores the role of the chemical senses in mediating intraspecific communication. Providing an up-to-date outline of the most recent advances in the field, it presents data from laboratory and wild species, ranging from invertebrates to vertebrates, from insects to humans. The book examines the structure, anatomy, electrophysiology, and molecular biology of pheromones. It discusses how chemical signals work on different mammalian and non-mammalian species and includes chapters on insects, Drosophila, honey bees, amphibians, mice, tigers, and cattle. It also explores the controversial topic of human pheromones. An essential reference for students and researchers in the field of pheromones, this is also an ideal resource for those working on behavioral phenotyping of animal models and persons interested in the biology/ecology of wild and domestic species.
Invertebrates have proven to be extremely useful model systems for gaining insights into the neural and molecular mechanisms of sensory processing, motor control and higher functions such as feeding behavior, learning and memory, navigation, and social behavior. A major factor in their enormous contributions to neuroscience is the relative simplicity of invertebrate nervous systems. In addition, some invertebrates, primarily the molluscs, have large cells, which allow analyses to take place at the level of individually identified neurons. Individual neurons can be surgically removed and assayed for expression of membrane channels, levels of second messengers, protein phosphorylation, and RNA and protein synthesis. Moreover, peptides and nucleotides can be injected into individual neurons. Other invertebrate model systems such as Drosophila and Caenorhabditis elegans offer tremendous advantages for obtaining insights into the neuronal bases of behavior through the application of genetic approaches. The Oxford Handbook of Invertebrate Neurobiology reviews the many neurobiological principles that have emerged from invertebrate analyses, such as motor pattern generation, mechanisms of synaptic transmission, and learning and memory. It also covers general features of the neurobiology of invertebrate circadian rhythms, development, and regeneration and reproduction. Some neurobiological phenomena are species-specific and diverse, especially in the domain of the neuronal control of locomotion and camouflage. Thus, separate chapters are provided on the control of swimming in annelids, crustaea and molluscs, locomotion in hexapods, and camouflage in cephalopods. Unique features of the handbook include chapters that review social behavior and intentionality in invertebrates. A chapter is devoted to summarizing past contributions of invertebrates to the understanding of nervous systems and identifying areas for future studies that will continue to advance that understanding.
Written by leaders in the field of chemosensation, Chemosensory Transduction provides a comprehensive resource for understanding the molecular mechanisms that allow animals to detect their chemical world. The text focuses on mammals, but also includes several chapters on chemosensory transduction mechanisms in lower vertebrates and insects. This book examines transduction mechanisms in the olfactory, taste, and somatosensory (chemesthetic) systems as well as in a variety of internal sensors that are responsible for homeostatic regulation of the body. Chapters cover such topics as social odors in mammals, vertebrate and invertebrate olfactory receptors, peptide signaling in taste and gut nutrient sensing. Includes a foreword by preeminent olfactory scientist Stuart Firestein, Chair of Columbia University's Department of Biological Sciences in New York, NY. Chemosensory Transduction describes state-of-the-art approaches and key findings related to the study of the chemical senses. Thus, it serves as the go-to reference for this subject for practicing scientists and students with backgrounds in sensory biology and/or neurobiology. The volume will also be valuable for industry researchers engaged in the design or testing of flavors, fragrances, foods and/or pharmaceuticals. - Provides a comprehensive overview for all chemosensory transduction mechanisms - Valuable for academics focused on sensory biology, neurobiology, and chemosensory transduction, as well as industry researchers in new flavor, fragrance, and food testing - Edited by leading experts in the field of olfactory transduction - Focuses on mammals, but lower vertebrates and invertebrate model systems are also included
Our objective in compiling a series of chapters on the chemical ecology of insects has been to delineate the major concepts of this discipline. The fine line between presenting a few topics in great detail or many topics in veneer has been carefully drawn, such that the book contains sufficient diversity to cover the field and a few topics in some depth. After the reader has penetrated the crust of what has been learned about chemical ecology of insects, the deficiencies in our understanding of this field should become evident. These deficiencies, to which no chapter topic is immune, indicate the youthful state of chemical ecology and the need for further investigations, especially those with potential for integrating elements that are presently isolated from each other. At the outset of this volume it becomes evident that, although we are beginning to decipher how receptor cells work, virtually nothing is known of how sensory information is coded to become relevant to the insect and to control the behavior of the insect. This problem is exacerbated by the state of our knowledge of how chemicals are distributed in nature, especially in complex habitats. And finally, we have been unable to understand the significance of orientation pathways of insects, in part because of the two previous problems: orientation seems to depend on patterns of distri bution of chemicals, the coding of these patterns by the central nervous system, and the generation of motor output based on the resulting motor commands.
Comprehensive Overview of Advances in OlfactionThe common belief is that human smell perception is much reduced compared with other mammals, so that whatever abilities are uncovered and investigated in animal research would have little significance for humans. However, new evidence from a variety of sources indicates this traditional view is likely
The fruitfly Drosophila melanogaster is an ideal model system to study processes of the central nervous system This book provides an overview of some major facets of recent research on Drosophila brain development.
More than two thirds of all living organisms described to date belong to the phylum Arthropoda. But their diversity, as measured in terms of species number, is also accompanied by an amazing disparity in terms of body form, developmental processes, and adaptations to every inhabitable place on Earth, from the deepest marine abysses to the earth surface and the air. The Arthropoda also include one of the most fashionable and extensively studied of all model organisms, the fruit-fly, whose name is not only linked forever to Mendelian and population genetics, but has more recently come back to centre stage as one of the most important and more extensively investigated models in developmental genetics. This approach has completely changed our appreciation of some of the most characteristic traits of arthropods as are the origin and evolution of segments, their regional and individual specialization, and the origin and evolution of the appendages. At approximately the same time as developmental genetics was eventually turning into the major agent in the birth of evolutionary developmental biology (evo-devo), molecular phylogenetics was challenging the traditional views on arthropod phylogeny, including the relationships among the four major groups: insects, crustaceans, myriapods, and chelicerates. In the meantime, palaeontology was revealing an amazing number of extinct forms that on the one side have contributed to a radical revisitation of arthropod phylogeny, but on the other have provided evidence of a previously unexpected disparity of arthropod and arthropod-like forms that often challenge a clear-cut delimitation of the phylum.
Offering extensive information on tardigrades, this volume begins with a chapter on the history of tardigrades, from the first description by Goeze in 1773, until 1929, when the most comprehensive monographic approach by E. Marcus was published. Tardigrades’ organ systems, including their integument, body cavity, digestive, muscular, nervous and reproductive systems, as well as their overall external morphology, are summarized in the second chapter. Subsequent chapters present the current state of knowledge on tardigrade phylogeny, biogeography, paleontology, cytology and cytogenetics. In addition, the book provides insights into the ecology of tardigrades in marine, freshwater and terrestrial habitats. The reproduction, development and life cycles are summarized and the extraordinary environmental adaptations of encystment and cyclomorphosis, desiccation tolerance, freezing tolerance and radiation tolerance are discussed in detail. Further chapters provide an overview of key approaches in molecular tardigrade studies and describe techniques for sampling and sample processing. The book closes with a list of tardigrade taxa up to a sub-generic level, including the type species of each genus, the numbers of lower taxa in each taxon, and the main environments in which the taxa were found. Given its depth of coverage, the volume offers an invaluable resource for scientists from various disciplines who plan to research tardigrades, and for all others who are interested in these fascinating animals.