Download Free The Molecular Basis For Neurodegenerative Diseases Book in PDF and EPUB Free Download. You can read online The Molecular Basis For Neurodegenerative Diseases and write the review.

The Molecular and Cellular Basis of Neurodegenerative Diseases: Underlying Mechanisms presents the pathology, genetics, biochemistry and cell biology of the major human neurodegenerative diseases, including Alzheimer's, Parkinson's, frontotemporal dementia, ALS, Huntington's, and prion diseases. Edited and authored by internationally recognized leaders in the field, the book's chapters explore their pathogenic commonalities and differences, also including discussions of animal models and prospects for therapeutics. Diseases are presented first, with common mechanisms later. Individual chapters discuss each major neurodegenerative disease, integrating this information to offer multiple molecular and cellular mechanisms that diseases may have in common. This book provides readers with a timely update on this rapidly advancing area of investigation, presenting an invaluable resource for researchers in the field. - Covers the spectrum of neurodegenerative diseases and their complex genetic, pathological, biochemical and cellular features - Focuses on leading hypotheses regarding the biochemical and cellular dysfunctions that cause neurodegeneration - Details features, advantages and limitations of animal models, as well as prospects for therapeutic development - Authored by internationally recognized leaders in the field - Includes illustrations that help clarify and consolidate complex concepts
Most textbooks on neurodegenerative disorders have used a classification scheme based upon either clinical syndromes or anatomical distribution of the pathology. In contrast, this book looks to the future and uses a classification based upon molecular mechanisms, rather than clinical or anatomical boundaries. Major advances in molecular genetics and the application of biochemical and immunocytochemical techniques to neurodegenerative disorders have generated this new approach. Throughout most of the current volume, diseases are clustered according to the proteins that accumulate within cells (e.g. tau, α-synuclein and TDP-43) and in the extracellular compartments (e.g. β-amyloid and prion proteins) or according to a shared pathogenetic mechanism, such as trinucleotide repeats, that are a feature of specific genetic disorders. Chapters throughout the book conform to a standard lay-out for ease of access by the reader and are written by a panel of International Experts Since the first edition of this book, major advances have been made in the discovery of common molecular mechanisms between many neurodegenerative diseases most notably in the frontotemporal lobar degenerations (FTLD) and motor neuron disease or amyotrophic lateral sclerosis. This book will be essential reading for clinicians, neuropathologists and basic neuroscientists who require the firm up-to-date knowledge of mechanisms, diagnostic pathology and genetics of Neurodegenerative diseases that is required for progress in therapy and management.
Parkinson's Disease: Molecular Mechanisms Underlying Pathology explores the molecular pathways at the basis of the cellular defects connected to Parkinson's disease, the second most common neurodegenerative disease, and the most common movement disorder. This book presents the latest research on the pathways and mechanisms that have been discovered to play a role in Parkinson's pathology. This focus on mechanisms rather than individual genes allows the contributors to elaborate on overlapping and joint functions of different causative genes. Readers will find descriptions of model systems that present parallels (and differences) between discoveries in different species, demonstrating the importance of multidisciplinary research that spans a broad array of technologies and model organisms. Written from both a cross-methodology and cross-species perspective, the book provides readers with the current state of knowledge on the molecular biology of Parkinson's. - Written by experts in the field that focus on pathways and mechanisms implicated in Parkinson's pathology - Draws parallels between multidisciplinary discoveries in different model organisms using an array of technologies - Provides a cross-methodology and cross-species approach to understanding the molecular biology of Parkinson's disease - Includes approximately 25 color Illustrations and diagrams to explain concepts and models - Focuses on key pathways and mechanisms (as opposed to model organism or gene) to provide a multidisciplinary approach to Parkinson's disease
This book is aimed at generating an updated reservoir of scientific endeavors undertaken to unravel the complicated yet intriguing topic of neurodegeneration. Scientists from Europe, USA and India who are experts in the field of neurodegenerative diseases have contributed to this book. This book will help readers gain insight into the recent knowledge obtained from Drosophila model, in understanding the molecular mechanisms underlying neurodegenerative disorders and also unravel novel scopes for therapeutic interventions. Different methodologies available to create humanized fly models that faithfully reflects the pathogenicities associated with particular disorders have been described here. It also includes information on the exciting area of neural stem cells. A brief discussion on neurofibrillary tangles, precedes the elaborate description of lessons learnt from Drosophila about Alzheimer's, Parkinson’s, Spinomuscular Atrophy, Huntington’s diseases, RNA expansion disorders and Hereditary Spastic Paraplegia. We have concluded the book with the use of Drosophila for identifying pharmacological therapies for neurodegenerative disorders. The wide range of topics covered here will not only be relevant for beginners who are new to the concept of the extensive utility of Drosophila as a model to study human disorders; but will also be an important contribution to the scientific community, with an insight into the paradigm shift in our understanding of neurodegenerative disorders. Completed with informative tables and communicative illustrations this book will keep the readers glued and intrigued. We have comprehensively anthologized the lessons learnt on neurodegeneration from Drosophila and have thus provided an insight into the multidimensional aspects of pathogenicities of majority of the neurodegenerative disorders.
It is generally accepted that neuropsychiatric disorders have a biological basis. Pathological changes leading to illness have been confirmed for Alzheimer’s (amyloid plaques) and Parkinson’s disease (loss of dopaminergic transmission) and are the foundation for studies on the molecular biology of these disorders. For other neuropsychiatric disorders, in particular for schizophrenic and affective disorders, molecular causes appear to be more complex and therefore remain hypothetical, despite decades of research. Changes in a number of neuronal pathways and structures have been reported to be associated with these disorders and are currently under extensive investigation. The present volume reviews recent knowledge with emphasis on ongoing research findings. Current hypotheses based on these findings are described and discussed.
Sets the stage for the development of better diagnostic techniques and therapeutics Featuring contributions from an international team of leading clinicians and biomedical researchers, Molecular Basis of Oxidative Stress reviews the molecular and chemical bases of oxidative stress, describing how oxidative stress can lead to the development of cancer and cardiovascular and neurodegenerative diseases. Moreover, it explains the potential role of free radicals in both the diagnosis and the development of therapeutics to treat disease. Molecular Basis of Oxidative Stress is logically organized, beginning with a comprehensive discussion of the fundamental chemistry of reactive species. Next, the book: Presents new mechanistic insights into how oxidative damage of biomolecules occurs Examines how these oxidative events effect cellular metabolism Investigates the role of oxidative stress in the pathogenesis of cancer, neurodegenerative disease, cardiovascular disease, and cystic fibrosis Explores opportunities to improve the diagnosis of disease and the design of new therapeutic agents Readers will find much novel information, including new radical chemistries and the latest discoveries of how free radicals react with biomolecules. The contributors also present recent findings that help us better understand the initiation of oxidative stress and the mechanisms leading to the pathogenesis of various diseases. Throughout the book, the use of molecular structures helps readers better understand redox chemistry. In addition, plenty of detailed figures illustrate the mechanisms of oxidative stress and disease pathogenesis. Examining everything from the basic chemistry of oxidative stress to the pathogenesis of disease, Molecular Basis of Oxidative Stress will help readers continue to explore the nature of oxidative stress and then use that knowledge to develop new approaches to prevent, detect, and treat a broad range of disease conditions.
Neurodegenerative diseases represent a very large group of heterogeneous disorders affecting specific subtypes of neurons in the brain. This book contributes insight both to the awareness of the brain and its neurodegenerative states. The chapters present current knowledge regarding genetics, molecular mechanisms, and new therapeutic strategies against neurodegenerative disorders. The book is intended to serve as a source to aid clinicians and researchers in the field, and also life science readers to increase their understanding and awareness of the clinical correlations, genetic aspects, neuropathological findings, and current therapeutic interventions in neurodegenerative diseases. I believe that this book will enlighten the curiosity for neurodegeneration and also encourage researchers to work on potentially effective molecular therapies for still mysterious neurodegenerative disorders.
This practical guide to the diagnosis of neurodegenerative diseases discusses modern molecular techniques, morphological classification, fundamentals of clinical symptomology, diagnostic pitfalls and immunostaining protocols. It is based on the proteinopathy concept of neurodegenerative disease, which has influenced classification and provides new strategies for therapy. Numerous high-quality images, including histopathology photomicrographs and neuroradiology scans, accompany the description of morphologic alterations and interpretation of immunoreactivities. Diagnostic methods and criteria are placed within recent developments in neuropathology, including the now widespread application of immunohistochemistry. To aid daily practice, the guide includes diagnostic algorithms and offers personal insights from experienced experts in the field. Special focus is given to the way brain tissue should be handled during diagnosis. This is a must-have reference for medical specialists and specialist medical trainees in the fields of pathology, neuropathology and neurology working with neuropathologic features of neurodegenerative diseases.
Protein misfolding and aggregation are hallmarks of several neurodegenerative proteinopathies. Though multiple factors like aging, oxidative stress, mitochondrial dysfunction, proteotoxic insults, genetic inconsistency, etc. are responsible for the dysfunction of the neuronal protein quality control system, targeting protein quality control has become an auspicious approach to halt the propagation of neurodegeneration. Quality Control of Cellular Protein in Neurodegenerative Disorders provides diverse aspects exploring the role of the protein quality control in neurodegenerative disorders and potential therapeutic strategies to combat the development and propagation of neurodegeneration. Featuring coverage on a broad range of topics such as molecular chaperones, protein misfolding, and stress signaling, this book is ideally designed for neurobiologists, neuropsychologists, neurophysiologists, medical professionals, neuropathologists, researchers, academicians, students, and practitioners engaged in studies of the protein quality control system in neuronal cells.
This comprehensive encyclopedia supplies the reader with concise information on the molecular pathophysiology of disease. Entries include defined diseases (such as Parkinson's disease) as well as pathophysiological entities (such as tremor). The 1,200 essays are brilliantly structured to allow rapid retrieval of the desired information. For more detailed reading, each entry is followed by up to five references. Individual entries are written by leading experts in the respective area of research to ensure state-of-the-art descriptions of the mechanisms involved. It is an invaluable companion for clinicians and scientists in all medical disciplines.