Download Free The Mechanics Of Viscoelastic Fluids Book in PDF and EPUB Free Download. You can read online The Mechanics Of Viscoelastic Fluids and write the review.

This book is about two special topics in rheological fluid mechanics: the elasticity of liquids and asymptotic theories of constitutive models. The major emphasis of the book is on the mathematical and physical consequences of the elasticity of liquids; seventeen of twenty chapters are devoted to this. Constitutive models which are instantaneously elastic can lead to some hyperbolicity in the dynamics of flow, waves of vorticity into rest (known as shear waves), to shock waves of vorticity or velocity, to steady flows of transonic type or to short wave instabilities which lead to ill-posed problems. Other kinds of models, with small Newtonian viscosities, give rise to perturbed instantaneous elasticity, associated with smoothing of discontinuities as in gas dynamics. There is no doubt that liquids will respond like elastic solids to impulses which are very rapid compared to the time it takes for the molecular order associated with short range forces in the liquid, to relax. After this, all liquids look viscous with signals propagating by diffusion rather than by waves. For small molecules this time of relaxation is estimated as lQ-13 to 10-10 seconds depending on the fluids. Waves associated with such liquids move with speeds of 1 QS cm/s, or even faster. For engineering applications the instantaneous elasticity of these fluids is of little interest; the practical dynamics is governed by diffusion, ·say, by the Navier-Stokes equations. On the other hand, there are other liquids which are known to have much longer times of relaxation.
The areas of suspension mechanics, stability and computational rheology have exploded in scope and substance in the last decade. The present book is one of the first of a comprehensive nature to treat these topics in detail. The aim of the authors has been to highlight the major discoveries and to present a number of them in sufficient breadth and depth so that the novice can learn from the examples chosen, and the expert can use them as a reference when necessary. The first two chapters, grouped under the category General Principles, deal with the kinematics of continuous media and the balance laws of mechanics, including the existence of the stress tensor and extensions of the laws of vector analysis to domains bounded by fractal curves or surfaces. The third and fourth chapters, under the heading Constitutive Modelling, present the tools necessary to formulate constitutive equations from the continuum or the microstructural approach. The last three chapters, under the caption Analytical and Numerical Techniques, contain most of the important results in the domain of the fluid mechanics of viscoelasticity, and form the core of the book. A number of topics of interest have not yet been developed to a theoretical level from which applications can be made in a routine manner. However, the authors have included these topics to make the reader aware of the state of affairs so that research into these matters can be carried out. For example, the sections which deal with domains bounded by fractal curves or surfaces show that the existence of a stress tensor in such regions is still open to question. Similarly, the constitutive modelling of suspensions, especially at high volume concentrations, with the corresponding particle migration from high to low shear regions is still very sketchy.
R.S. Rivlin is one of the principal architects of nonlinear continuum mechanics: His work on the mechanics of rubber (in the 1940s and 50s) established the basis of finite elasticity theory. These volumes make most of his scientific papers available again and show the full scope and significance of his contributions.